Short-Run Regional Forecasts: Spatial Models through Varying Cross-Sectional and Temporal Dimensions
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Matías Mayor & Roberto Patuelli, 2012. "Short-Run Regional Forecasts: Spatial Models through Varying Cross-Sectional and Temporal Dimensions," Advances in Spatial Science, in: Esteban Fernández Vázquez & Fernando Rubiera Morollón (ed.), Defining the Spatial Scale in Modern Regional Analysis, edition 127, chapter 0, pages 173-192, Springer.
- M. Mayor-Fern ndez & R. Patuelli, 2012. "Short-Run Regional Forecasts: Spatial Models through Varying Cross-Sectional and Temporal Dimensions," Working Papers wp835, Dipartimento Scienze Economiche, Universita' di Bologna.
References listed on IDEAS
- Roberto Patuelli & Peter Nijkamp & Simonetta Longhi & Aura Reggiani, 2008.
"Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions,"
Environment and Planning B, , vol. 35(4), pages 701-722, August.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2005. "Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms," Computational Economics 0511002, University Library of Munich, Germany.
- Blanchard, Olivier & Jimeno, Juan F, 1995. "Structural Unemployment: Spain versus Portugal," American Economic Review, American Economic Association, vol. 85(2), pages 212-218, May.
- Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012. "Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.
- Schanne, N. & Wapler, R. & Weyh, A., 2010.
"Regional unemployment forecasts with spatial interdependencies,"
International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
- Hampel, Katharina & Kunz, Marcus & Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2007. "Regional employment forecasts with spatial interdependencies," IAB-Discussion Paper 200702, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB-Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Michael Beenstock & Daniel Felsenstein, 2007. "Spatial Vector Autoregressions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 2(2), pages 167-196.
- Jimeno, Juan F. & Bentolila, Samuel, 1998. "Regional unemployment persistence (Spain, 1976-1994)," Labour Economics, Elsevier, vol. 5(1), pages 25-51, March.
- Enrique López-Bazo & Tomás del Barrio & Manuel Artis, 2002.
"The regional distribution of Spanish unemployment: A spatial analysis,"
Papers in Regional Science, Springer;Regional Science Association International, vol. 81(3), pages 365-389.
- Lopez-Bazo, Enrique & Del Barrio, Tomas & Artis, Manuel, 2002. "The regional distribution of spanish unemployment. A spatial analysis," ERSA conference papers ersa02p020, European Regional Science Association.
- Badi Baltagi & Dong Li, 2006.
"Prediction in the Panel Data Model with Spatial Correlation: the Case of Liquor,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(2), pages 175-185.
- Badi H. Baltagi & Dong Li, 2006. "Prediction in the Panel Data Model with Spatial Correlation: The Case of Liquor," Center for Policy Research Working Papers 84, Center for Policy Research, Maxwell School, Syracuse University.
- repec:bla:kyklos:v:50:y:1997:i:2:p:221-45 is not listed on IDEAS
- Badi H. Baltagi & Dong Li, 2004. "Prediction in the Panel Data Model with Spatial Correlation," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 13, pages 283-295, Springer.
- Pesaran M.H. & Schuermann T. & Weiner S.M., 2004.
"Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
- Pesaran, M.H. & Weiner, S.M., 2001. "Modelling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Cambridge Working Papers in Economics 0119, Faculty of Economics, University of Cambridge.
- M. Hashem Pesaran & Til Schuermann & Scott M. Weiner, 2002. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Center for Financial Institutions Working Papers 01-38, Wharton School Center for Financial Institutions, University of Pennsylvania.
- M. Hashem Pesaran & Til Schuermann & Scott M. Weiner, 2001. "Modelling regional interdependencies using a global error-correcting macroeconometric model," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B4-1, International Conferences on Panel Data.
- PESARAN M. Hashem & SCHUERMANN Til & WEINER Scott, 2010. "Modelling Regional Interdependencies using a Global Error-Correcting Macroeconometric Model," EcoMod2003 330700121, EcoMod.
- Bernard Fingleton (ed.), 2003. "European Regional Growth," Advances in Spatial Science, Springer, number 978-3-662-07136-6, February.
- Bernard Fingleton, 2009.
"Prediction Using Panel Data Regression with Spatial Random Effects,"
International Regional Science Review, , vol. 32(2), pages 195-220, April.
- Fingleton, Bernard, 2008. "Prediction using panel data regression with spatial random effects," LSE Research Online Documents on Economics 33150, London School of Economics and Political Science, LSE Library.
- Bernard Fingleton, 2008. "Prediction Using Panel Data Regression with Spatial Random Effects," SERC Discussion Papers 0007, Centre for Economic Performance, LSE.
- Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008.
"A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
- Konstantin A. Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2007. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Discussion Papers of DIW Berlin 664, DIW Berlin, German Institute for Economic Research.
- Hernandez-Murillo, Ruben & Owyang, Michael T., 2006.
"The information content of regional employment data for forecasting aggregate conditions,"
Economics Letters, Elsevier, vol. 90(3), pages 335-339, March.
- Ruben Hernandez-Murillo & Michael T. Owyang, 2004. "The information content of regional employment data for forecasting aggregate conditions," Working Papers 2004-005, Federal Reserve Bank of St. Louis.
- Pan, Zheng & LeSage, James P., 1995. "Using spatial contiguity as prior information in vector autoregressive models," Economics Letters, Elsevier, vol. 47(2), pages 137-142, February.
- Daniel A. Griffith, 2000. "A linear regression solution to the spatial autocorrelation problem," Journal of Geographical Systems, Springer, vol. 2(2), pages 141-156, July.
- Jim Taylor & Steve Bradley, 1997. "Unemployment in Europe: A Comparative Analysis of Regional Disparities in Germany, Italy and the UK," Kyklos, Wiley Blackwell, vol. 50(2), pages 221-245, May.
- Giacomini, Raffaella & Granger, Clive W. J., 2004.
"Aggregation of space-time processes,"
Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
- Giacomini, Raffaella & Granger, Clive W.J., 2001. "Aggregationn of Space-Time Processes," University of California at San Diego, Economics Working Paper Series qt77f76455, Department of Economics, UC San Diego.
- Raffaella Giacomini & Clive W.J. Granger, 2002. "Aggregation of Space-Time Processes," Boston College Working Papers in Economics 582, Boston College Department of Economics.
- Valter Di Giacinto, 2003.
"Differential Regional Effects of Monetary Policy: A Geographical SVAR Approach,"
International Regional Science Review, , vol. 26(3), pages 313-341, July.
- Di Giacinto, Valter, 2002. "Differential regional effects of monetary policy: a geographical SVAR approach," ERSA conference papers ersa02p257, European Regional Science Association.
- Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
- M Tiefelsdorf & D A Griffith & B Boots, 1999. "A Variance-Stabilizing Coding Scheme for Spatial Link Matrices," Environment and Planning A, , vol. 31(1), pages 165-180, January.
- Cem Ertur & Julie Gallo, 2003. "An Exploratory Spatial Data Analysis of European Regional Disparities, 1980–1995," Advances in Spatial Science, in: Bernard Fingleton (ed.), European Regional Growth, chapter 2, pages 55-97, Springer.
- Todd Kuethe & Valerien Pede, 2011.
"Regional Housing Price Cycles: A Spatio-temporal Analysis Using US State-level Data,"
Regional Studies, Taylor & Francis Journals, vol. 45(5), pages 563-574.
- Kuethe, Todd H. & Pede, Valerien O., 2009. "Regional Housing Price Cycles: A Spatio-Temporal Analysis Using Us State Level Data," Working papers 47596, Purdue University, Department of Agricultural Economics.
- Roberto Patuelli & Peter Nijkamp & Simonetta Longhi & Aura Reggiani, 2008.
"Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions,"
Environment and Planning B, , vol. 35(4), pages 701-722, August.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2008. "Neural networks and genetic algorithms as forecasting tools: a case study on German regions," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 35(4), pages 701-722, July.
- Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2005. "Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms," Computational Economics 0511002, University Library of Munich, Germany.
- Eleonora Patacchini & Yves Zenou, 2007. "Spatial dependence in local unemployment rates," Journal of Economic Geography, Oxford University Press, vol. 7(2), pages 169-191, March.
- Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4, February.
- Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
- Ana Angulo & F. Trívez, 2010. "The impact of spatial elements on the forecasting of Spanish labour series," Journal of Geographical Systems, Springer, vol. 12(2), pages 155-174, June.
- Todd H. Kuethe & Valerien Pede, 2009. "Regional Housing Price Cycles: A Spatio-Temporal Analysis Using Us State Level," Working Papers 09-04, Purdue University, College of Agriculture, Department of Agricultural Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anna Gloria Billé & Alessio Tomelleri & Francesco Ravazzolo, 2023.
"Forecasting regional GDPs: a comparison with spatial dynamic panel data models,"
Spatial Economic Analysis, Taylor & Francis Journals, vol. 18(4), pages 530-551, October.
- Anna Gloria Billé & Alessio Tomelleri & Francesco Ravazzolo, 2021. "Forecasting Regional GDPs: a Comparison with Spatial Dynamic Panel Data Models," FBK-IRVAPP Working Papers 2021-02, Research Institute for the Evaluation of Public Policies (IRVAPP), Bruno Kessler Foundation.
- Wozniak Marcin, 2020. "Forecasting the unemployment rate over districts with the use of distinct methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-20, April.
- Al Mamun, Md & Sohag, Kazi & Hassan, M. Kabir, 2017. "Governance, resources and growth," Economic Modelling, Elsevier, vol. 63(C), pages 238-261.
- Xu Xiaojie, 2018. "Using Local Information to Improve Short-Run Corn Price Forecasts," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 16(1), pages 1-15, January.
- Lucian Liviu ALBU & Carlos MatéJIMÉNEZ & Mihaela SIMIONESCU, 2015. "The Assessment of Some Macroeconomic Forecasts for Spain using Aggregated Accuracy Indicators," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 30-47, June.
- Robert Lehmann & Klaus Wohlrabe, 2014.
"Regional economic forecasting: state-of-the-art methodology and future challenges,"
Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
- Robert Lehmann & Klaus Wohlrabe, 2014. "Regional Economic Forecasting: State-of-the-Art Methodology and Future Challenge," CESifo Working Paper Series 5145, CESifo.
- Semerikova, Elena & Demidova, Olga, 2016. "Using spatial econometric models for regional unemployment forecasting," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 29-51.
- Yang, Yang & Zhang, Honglei, 2019. "Spatial-temporal forecasting of tourism demand," Annals of Tourism Research, Elsevier, vol. 75(C), pages 106-119.
- Alharbi, Samar S. & Al Mamun, Md & Boubaker, Sabri & Rizvi, Syed Kumail Abbas, 2023.
"Green finance and renewable energy: A worldwide evidence,"
Energy Economics, Elsevier, vol. 118(C).
- S.S. Alharbi & M. Al Mamun & Sabri Boubaker & S.K.A. Rizvi, 2023. "Green Finance and Renewable Energy: A Worldwide Evidence," Post-Print hal-04434113, HAL.
- Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB-Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Roberto Patuelli & MatÃas Mayor, 2014. "Introduction," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 191-193.
- Schanne, Norbert, 2015. "A Global Vector Autoregression (GVAR) model for regional labour markets and its forecasting performance with leading indicators in Germany," IAB-Discussion Paper 201513, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012. "Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.
- Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012.
"Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany,"
Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.
- Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2009. "Persistence of Regional Unemployment: Application of a Spatial Filtering Approach to Local Labour Markets in Germany," Working Paper series 49_09, Rimini Centre for Economic Analysis, revised Nov 2011.
- Patuelli, Roberto & Schanne, Norbert & Griffith, Daniel A. & Nijkamp, Peter, 2011. "Persistence of regional unemployment : Application of a spatial filtering approach to local labour markets in Germany," IAB-Discussion Paper 201103, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- R. Patuelli & N. Schanne & D. A. Griffith & P. Nijkamp, 2011. "Persistence of Regional Unemployment: Application of a Spatial Filtering Approach to Local Labour Markets in Germany," Working Papers wp743, Dipartimento Scienze Economiche, Universita' di Bologna.
- Schanne, N. & Wapler, R. & Weyh, A., 2010.
"Regional unemployment forecasts with spatial interdependencies,"
International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
- Hampel, Katharina & Kunz, Marcus & Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2007. "Regional employment forecasts with spatial interdependencies," IAB-Discussion Paper 200702, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB-Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Wozniak Marcin, 2020. "Forecasting the unemployment rate over districts with the use of distinct methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-20, April.
- Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019.
"A time-space dynamic panel data model with spatial moving average errors,"
Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
- Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2018. "A Time-Space Dynamic Panel Data Model with Spatial Moving Average Errors," IZA Discussion Papers 11587, Institute of Labor Economics (IZA).
- Badi Baltagi & Bernard Fingleton & Alain Pirotte, 2019. "A time-space dynamic panel data model with spatial moving average errors," Post-Print hal-04129306, HAL.
- Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2018. "A Time-Space Dynamic Panel Data Model with Spatial Moving Average Errors," MPRA Paper 86371, University Library of Munich, Germany.
- Xueting Zhao & J. Burnett, 2014. "Forecasting province-level $${\text {CO}}_{2}$$ CO 2 emissions in China," Letters in Spatial and Resource Sciences, Springer, vol. 7(3), pages 171-183, October.
- Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
- Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011.
"Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data,"
International Regional Science Review, , vol. 34(2), pages 253-280, April.
- Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2009. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," Working Paper series 02_09, Rimini Centre for Economic Analysis, revised May 2010.
- Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2009. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0902, USI Università della Svizzera italiana.
- Semerikova, Elena & Demidova, Olga, 2016. "Using spatial econometric models for regional unemployment forecasting," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 29-51.
- Robert Lehmann & Klaus Wohlrabe, 2014.
"Regional economic forecasting: state-of-the-art methodology and future challenges,"
Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
- Robert Lehmann & Klaus Wohlrabe, 2014. "Regional Economic Forecasting: State-of-the-Art Methodology and Future Challenge," CESifo Working Paper Series 5145, CESifo.
- Miguel A. Márquez & Julián Ramajo & Geoffrey JD. Hewings, 2015. "Regional growth and spatial spillovers: Evidence from an SpVAR for the Spanish regions," Papers in Regional Science, Wiley Blackwell, vol. 94, pages 1-18, November.
- Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2006.
"The Use of Spatial Filtering Techniques: The Spatial and Space-time Structure of German Unemployment Data,"
Tinbergen Institute Discussion Papers
06-049/3, Tinbergen Institute.
- Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2009. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0902, USI Università della Svizzera italiana.
- Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2009. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," Working Paper series 02_09, Rimini Centre for Economic Analysis, revised May 2010.
- A. M. Angulo & J. Mur & F. J. Trívez, 2018. "Measuring resilience to economic shocks: an application to Spain," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 349-373, March.
- Cuéllar Martín, Jaime & Martín-Román, Ángel L. & Moral, Alfonso, 2017. "A composed error model decomposition and spatial analysis of local unemployment," MPRA Paper 79783, University Library of Munich, Germany.
- Matías Mayor & Roberto Patuelli, 2015.
"Spatial panel data forecasting over different horizons, cross-sectional and temporal dimensions,"
Revue d'économie régionale et urbaine, Armand Colin, vol. 0(1), pages 149-180.
- MatÃas Mayor & Roberto Patuelli, 2013. "Spatial Panel Data Forecasting over Different Horizons, Cross-Sectional and Temporal Dimensions," ERSA conference papers ersa13p815, European Regional Science Association.
- MatÃas Mayor & Roberto Patuelli, 2013. "Spatial Panel Data Forecasting over Different Horizons, Cross-Sectional and Temporal Dimensions," Working Paper series 50_13, Rimini Centre for Economic Analysis, revised Jan 2014.
- M. Mayer & R. Patuelli, 2013. "Spatial Panel Data Forecasting over Different Horizons, Cross-Sectional and Temporal Dimensions," Working Papers wp899, Dipartimento Scienze Economiche, Universita' di Bologna.
- Roberto Bande & Marika Karanassou, 2013. "The Natural Rate of Unemployment Hypothesis and the Evolution of Regional Disparities in Spanish Unemployment," Urban Studies, Urban Studies Journal Limited, vol. 50(10), pages 2044-2062, August.
- Badi H. Baltagi, 2008.
"Forecasting with panel data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
- Baltagi, Badi H., 2006. "Forecasting with panel data," Discussion Paper Series 1: Economic Studies 2006,25, Deutsche Bundesbank.
- Badi H. Baltagi, 2007. "Forecasting with Panel Data," Center for Policy Research Working Papers 91, Center for Policy Research, Maxwell School, Syracuse University.
- Norbert Schanne, 2011. "Forecasting Regional Labour Markets with GVAR Models and Indicators (refereed paper)," ERSA conference papers ersa10p1044, European Regional Science Association.
- Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014.
"Estimating and Forecasting with a Dynamic Spatial Panel Data Model,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
- Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2011. "Estimating and forecasting with a dynamic spatial panel data model," LSE Research Online Documents on Economics 58322, London School of Economics and Political Science, LSE Library.
- Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2012. "Estimating and Forecasting With A Dynamic Spatial Panel Data Model," Center for Policy Research Working Papers 149, Center for Policy Research, Maxwell School, Syracuse University.
- Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2011. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," SERC Discussion Papers 0095, Centre for Economic Performance, LSE.
- Todd Kuethe & Valerien Pede, 2011.
"Regional Housing Price Cycles: A Spatio-temporal Analysis Using US State-level Data,"
Regional Studies, Taylor & Francis Journals, vol. 45(5), pages 563-574.
- Kuethe, Todd H. & Pede, Valerien O., 2009. "Regional Housing Price Cycles: A Spatio-Temporal Analysis Using Us State Level Data," Working papers 47596, Purdue University, Department of Agricultural Economics.
More about this item
Keywords
regional forecasts; spatial econometrics; dynamic panel; SVAR;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
- E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2012-06-25 (Forecasting)
- NEP-GEO-2012-06-25 (Economic Geography)
- NEP-URE-2012-06-25 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:15_12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.