IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa10p1044.html
   My bibliography  Save this paper

Forecasting Regional Labour Markets with GVAR Models and Indicators (refereed paper)

Author

Listed:
  • Norbert Schanne

Abstract

The development of employment and unemployment in regional labour markets is known to spatially interdependent. Global Vector-Autoregressive (GVAR) models generate a link between the local and the surrounding labour markets and thus might be useful when analysing and forecasting employment and unemployment even if they are non-stationary or co-trending. Furthermore, GVARs have the advantage to allow for both strong cross-sectional dependence on ``leader regions' and weak cross-sectional, spatial dependence. For the recent and further development of labour markets the economic situation (described e.g. by business-cycle indicators), politics and environmental impacts (e.g. climate) may be relevant. Information on these impacts can be integrated in addition to the joint development of employment and unemployment and the spatial link in a way that allows on the one hand to carry out economic plausibility checks easily and on the other hand to directly receive measures regarding the statistical properties and the precision of the forecasts. Then, the forecasting accuracy is demonstrated for German regional labour-market data in simulated forecasts at different horizons and for several periods. Business-cycle indicators seem to have no information regarding labour-market prediction, climate indicators little. In contrast, including information about labour-market policies and vacancies, and accounting for the lagged and contemporaneous spatial dependence can improve the forecasts relative to a simple bivariate model.

Suggested Citation

  • Norbert Schanne, 2011. "Forecasting Regional Labour Markets with GVAR Models and Indicators (refereed paper)," ERSA conference papers ersa10p1044, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa10p1044
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa10/ERSA2010finalpaper1044.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, June.
    2. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    3. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    4. Holly, Sean & Hashem Pesaran, M. & Yamagata, Takashi, 2011. "The spatial and temporal diffusion of house prices in the UK," Journal of Urban Economics, Elsevier, vol. 69(1), pages 2-23, January.
    5. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    6. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    7. Pierre Cahuc & André Zylberberg, 2004. "Labor Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 026203316x, December.
    8. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    9. Eleonora Patacchini & Yves Zenou, 2007. "Spatial dependence in local unemployment rates," Journal of Economic Geography, Oxford University Press, vol. 7(2), pages 169-191, March.
    10. Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    2. Vakulenko, Elena, 2015. "Analysis of the relationship between regional labour markets in Russia using Okun’s model," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 40(4), pages 28-48.
    3. Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB-Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schanne, Norbert, 2015. "A Global Vector Autoregression (GVAR) model for regional labour markets and its forecasting performance with leading indicators in Germany," IAB-Discussion Paper 201513, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    2. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    3. Matías Mayor & Roberto Patuelli, 2012. "Short-Run Regional Forecasts: Spatial Models through Varying Cross-Sectional and Temporal Dimensions," Advances in Spatial Science, in: Esteban Fernández Vázquez & Fernando Rubiera Morollón (ed.), Defining the Spatial Scale in Modern Regional Analysis, edition 127, chapter 0, pages 173-192, Springer.
    4. Ryan R. Brady, 2021. "Direct Forecasting for Applied Regional Analysis," Departmental Working Papers 67, United States Naval Academy Department of Economics.
    5. Alexander Chudik & M. Hashem Pesaran, 2013. "Econometric Analysis of High Dimensional VARs Featuring a Dominant Unit," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 592-649, August.
    6. Bettendorf, Timo, 2017. "Investigating Global Imbalances: Empirical evidence from a GVAR approach," Economic Modelling, Elsevier, vol. 64(C), pages 201-210.
    7. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    8. repec:diw:diwwpp:dp1230 is not listed on IDEAS
    9. Saldías, Martín, 2013. "A market-based approach to sector risk determinants and transmission in the euro area," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4534-4555.
    10. Chudik, Alexander & Pesaran, M. Hashem, 2019. "Mean group estimation in presence of weakly cross-correlated estimators," Economics Letters, Elsevier, vol. 175(C), pages 101-105.
    11. Ignacio Lozano Espitia & Karen Rodríguez, 2009. "Assessing the Macroeconomic Effects of Fiscal," Borradores de Economia 5386, Banco de la Republica.
    12. Harald Schmidbauer & Angi Roesch & Erhan Uluceviz, 2013. "Market Connectedness: Spillovers, Information Flow, and Relative Market Entropy," Koç University-TUSIAD Economic Research Forum Working Papers 1320, Koc University-TUSIAD Economic Research Forum.
    13. Cubadda, Gianluca & Hecq, Alain & Palm, Franz C., 2009. "Studying co-movements in large multivariate data prior to multivariate modelling," Journal of Econometrics, Elsevier, vol. 148(1), pages 25-35, January.
    14. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    15. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    16. Ana María Iregui & Jesús Otero, 2013. "A Spatiotemporal Analysis of Agricultural Prices: An Application to Colombian Data," Agribusiness, John Wiley & Sons, Ltd., vol. 29(4), pages 497-508, September.
    17. Cudjoe, Godsway & Breisinger, Clemens & Diao, Xinshen, 2010. "Local impacts of a global crisis: Food price transmission, consumer welfare and poverty in Ghana," Food Policy, Elsevier, vol. 35(4), pages 294-302, August.
    18. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    19. Gaudeul, Alexia & Giannetti, Caterina, 2011. "The role of reciprocation in social network formation, with an application to blogging," MPRA Paper 34094, University Library of Munich, Germany.
    20. Matías Mayor & Roberto Patuelli, 2015. "Spatial panel data forecasting over different horizons, cross-sectional and temporal dimensions," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(1), pages 149-180.
    21. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa10p1044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.