IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-06-13.html
   My bibliography  Save this paper

Energy and Carbon Dynamics at Advanced Stages of Development: An Analysis of the U.S. States, 1960–1999

Author

Listed:
  • Aldy, Joseph E.

    (Resources for the Future)

Abstract

This paper explores the relationships among economic development, energy consumption, and carbon dioxide (CO2) emissions by focusing on a set of advanced economies, the U.S. states. Energy consumption and emissions grew 50–60 percent on average over the 1960–1999 period. The states’ per capita energy consumption and emissions have grown on average 2 percent annually as income and population growth have outpaced improvements in energy intensity of output and carbon intensity of energy. The energy consumption income elasticity is positive but decreasing in income, although energy production takes an inverted-U shape, reflecting the electricity imports among high income states. The standard CO2 measure, corresponding to energy production, is characterized by an inverted-U environmental Kuznets curve. Adjusting emissions for interstate electricity trade yields an emissions–income relationship that peaks and plateaus. The carbon intensity of energy declines in income for total energy consumption and the industrial, residential, and commercial sectors.

Suggested Citation

  • Aldy, Joseph E., 2006. "Energy and Carbon Dynamics at Advanced Stages of Development: An Analysis of the U.S. States, 1960–1999," RFF Working Paper Series dp-06-13, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-06-13
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-06-13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    2. Randall Lutter, 2000. "Developing Countries' Greenhouse Emmissions: Uncertainty and Implications for Participation in the Kyoto Protocol," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 93-120.
    3. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
    4. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    5. Rossana Galli, 1998. "The Relationship Between Energy Intensity and Income Levels: Forecasting Long Term Energy Demand in Asian Emerging Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amy A. Jones & Mark C. Snead, 2010. "Are U.S. states equally prepared for a carbon-constrained world?," Economic Review, Federal Reserve Bank of Kansas City, vol. 95(Q IV), pages 67-96.
    2. Davidsdottir, B. & Fisher, M., 2011. "The odd couple: The relationship between state economic performance and carbon emissions economic intensity," Energy Policy, Elsevier, vol. 39(8), pages 4551-4562, August.
    3. Wagner, Gernot, 2010. "Energy content of world trade," Energy Policy, Elsevier, vol. 38(12), pages 7710-7721, December.
    4. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    5. James G. Baldwin & Ian Sue Wing, 2013. "The Spatiotemporal Evolution Of U.S. Carbon Dioxide Emissions: Stylized Facts And Implications For Climate Policy," Journal of Regional Science, Wiley Blackwell, vol. 53(4), pages 672-689, October.
    6. Clarke-Sather, Afton & Qu, Jiansheng & Wang, Qin & Zeng, Jingjing & Li, Yan, 2011. "Carbon inequality at the sub-national scale: A case study of provincial-level inequality in CO2 emissions in China 1997-2007," Energy Policy, Elsevier, vol. 39(9), pages 5420-5428, September.
    7. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    8. Panda Su & Yu Wang, 2022. "Does It Help Carbon Reduction in China? A Research Paper about the Mediating Role of Production Automation Based on the Carbon Kuznets Curve," Sustainability, MDPI, vol. 14(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," Working Papers No 01/2024, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Zsuzsanna Csereklyei & M. d. Mar Rubio-Varas & David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, , vol. 37(2), pages 223-256, April.
    3. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    4. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021. "Forecasting regional long-run energy demand: A functional coefficient panel approach," Energy Economics, Elsevier, vol. 96(C).
    5. Liddle, Brantley & Smyth, Russell & Zhang, Xibin, 2020. "Time-varying income and price elasticities for energy demand: Evidence from a middle-income panel," Energy Economics, Elsevier, vol. 86(C).
    6. Hilde C. Bjørnland & Malin C. Jensen & Leif Anders Thorsrud, 2023. "Business Cycle and Health Dynamics during the COVID-19 Pandemic. A Scandinavian Perspective," Working Papers No 15/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    7. Wagner, Gernot, 2010. "Energy content of world trade," Energy Policy, Elsevier, vol. 38(12), pages 7710-7721, December.
    8. Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand," Working Papers 1409, Department of Economics, University of Missouri.
    9. Fouquet, Roger, 2016. "Lessons from energy history for climate policy: technological change, demand and economic development," LSE Research Online Documents on Economics 67785, London School of Economics and Political Science, LSE Library.
    10. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2016. "Disentangling temporal patterns in elasticities: A functional coefficient panel analysis of electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 232-243.
    11. Galeotti, Marzio & Salini, Silvia & Verdolini, Elena, 2020. "Measuring environmental policy stringency: Approaches, validity, and impact on environmental innovation and energy efficiency," Energy Policy, Elsevier, vol. 136(C).
    12. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    13. Fotis, Panagiotis & Karkalakos, Sotiris & Asteriou, Dimitrios, 2017. "The relationship between energy demand and real GDP growth rate: The role of price asymmetries and spatial externalities within 34 countries across the globe," Energy Economics, Elsevier, vol. 66(C), pages 69-84.
    14. Roger Fouquet, 2015. "Lessons from energy history for climate policy," GRI Working Papers 209, Grantham Research Institute on Climate Change and the Environment.
    15. Filipović, Sanja & Verbič, Miroslav & Radovanović, Mirjana, 2015. "Determinants of energy intensity in the European Union: A panel data analysis," Energy, Elsevier, vol. 92(P3), pages 547-555.
    16. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    17. Raul Jimenez & Ariel Yépez-García, 2016. "Composition and Sensitivity of Residential Energy Consumption," IDB Publications (Working Papers) 95257, Inter-American Development Bank.
    18. Galindo, Luis Miguel & Samaniego, Joseluis, 2010. "La economía del cambio climático en América Latina y el Caribe: algunos hechos estilizados," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), April.
    19. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    20. Guillén Solís, Omar, 2017. "Las energías renovables con una visión de Estado para las naciones de América Latina," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 47345, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).

    More about this item

    Keywords

    Engel curve; environmental Kuznets curve; cubic spline; Kaya identity;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-06-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.