IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/2401.html
   My bibliography  Save this paper

Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption

Author

Listed:

Abstract

We employ a semiparametric functional coefficient panel approach to allow an economic relationship of interest to have both country-specific heterogeneity and a common component that may be nonlinear in the covariate and may vary over time. Surfaces of the common component of coefficients and partial derivatives (elasticities) are estimated and then decomposed by functional principal components, and we introduce a bootstrap-based procedure for inference on the loadings of the functional principal components. Applying this approach to national energy-GDP elasticities, we find that elasticities are driven by common components that are distinct across two groups of countries yet have leading functional principal components that share similarities. The groups roughly correspond to OECD and non-OECD countries, but we utilize a novel methodology to regroup countries based on common energy consumption patterns to minimize root mean squared error within groups. The common component of the group containing more developed countries has an additional functional principal component that decreases the elasticity of the wealthiest countries in recent decades.

Suggested Citation

  • Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," Working Papers 2401, Department of Economics, University of Missouri.
  • Handle: RePEc:umc:wpaper:2401
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1dAgmwmPmH7AnuKsU8uEYGKdDdduoaX6L/view?usp=sharing
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Measuring the Output Responses to Fiscal Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 1-27, May.
    2. Yoosoon Chang & Ana María Herrera & Elena Pesavento, 2023. "Oil prices uncertainty, endogenous regime switching, and inflation anchoring," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 820-839, September.
    3. Kuttner, Kenneth N., 2001. "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 523-544, June.
    4. Ireland, Peter N., 2015. "Monetary policy, bond risk premia, and the economy," Journal of Monetary Economics, Elsevier, vol. 76(C), pages 124-140.
    5. Evans, Charles L. & Marshall, David A., 2007. "Economic determinants of the nominal treasury yield curve," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1986-2003, October.
    6. Boehm, Christoph E., 2020. "Government consumption and investment: Does the composition of purchases affect the multiplier?," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 80-93.
    7. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    8. Brookes, L G, 1972. "More on the Output Elasticity of Energy Consumption," Journal of Industrial Economics, Wiley Blackwell, vol. 21(1), pages 83-92, November.
    9. Buera, Francisco & Nicolini, Juan Pablo, 2004. "Optimal maturity of government debt without state contingent bonds," Journal of Monetary Economics, Elsevier, vol. 51(3), pages 531-554, April.
    10. Minsu Chang & Xiaohong Chen & Frank Schorfheide, 2021. "Heterogeneity and Aggregate Fluctuations," NBER Working Papers 28853, National Bureau of Economic Research, Inc.
    11. Brantley Liddle and Hillard Huntington, 2020. "Revisiting the Income Elasticity of Energy Consumption: A Heterogeneous, Common Factor, Dynamic OECD & non-OECD Country Panel Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 207-230.
    12. Isabel Correia & Juan Pablo Nicolini & Pedro Teles, 2008. "Optimal Fiscal and Monetary Policy: Equivalence Results," Journal of Political Economy, University of Chicago Press, vol. 116(1), pages 141-170, February.
    13. Karantounias, Anastasios G., 2023. "Doubts about the model and optimal policy," Journal of Economic Theory, Elsevier, vol. 210(C).
    14. Mark Gertler & Peter Karadi, 2015. "Monetary Policy Surprises, Credit Costs, and Economic Activity," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 44-76, January.
    15. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    16. Robert K. Kaufmann, 2004. "The Mechanisms for Autonomous Energy Efficiency Increases: A Cointegration Analysis of the US Energy/GDP Ratio," The Energy Journal, , vol. 25(1), pages 63-86, January.
    17. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    18. Bierens, Herman J. & Martins, Luis F., 2010. "Time-Varying Cointegration," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1453-1490, October.
    19. Monika Piazzesi, 2005. "Bond Yields and the Federal Reserve," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 311-344, April.
    20. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    21. Jakob, Michael & Haller, Markus & Marschinski, Robert, 2012. "Will history repeat itself? Economic convergence and convergence in energy use patterns," Energy Economics, Elsevier, vol. 34(1), pages 95-104.
    22. Hilde C. Bjørnland & Yoosoon Chang & Jamie L. Cross, 2023. "Oil and the Stock Market Revisited: A Mixed Functional VAR Approach," CAMA Working Papers 2023-18, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    23. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    24. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    25. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "The Transmission of Monetary Policy Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(3), pages 74-107, July.
    26. Park, Joon Y. & Hahn, Sang B., 1999. "Cointegrating Regressions With Time Varying Coefficients," Econometric Theory, Cambridge University Press, vol. 15(5), pages 664-703, October.
    27. Barro, Robert J, 1979. "On the Determination of the Public Debt," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 940-971, October.
    28. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    29. Atsushi Inoue & Barbara Rossi, 2021. "A new approach to measuring economic policy shocks, with an application to conventional and unconventional monetary policy," Quantitative Economics, Econometric Society, vol. 12(4), pages 1085-1138, November.
    30. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    31. Plosser, Charles I., 1987. "Fiscal policy and the term structure," Journal of Monetary Economics, Elsevier, vol. 20(2), pages 343-367, September.
    32. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    33. Richmond, Amy K. & Kaufmann, Robert K., 2006. "Is there a turning point in the relationship between income and energy use and/or carbon emissions?," Ecological Economics, Elsevier, vol. 56(2), pages 176-189, February.
    34. Ruth A. Judson & Richard Schmalensee & Thomas M. Stoker, 1999. "Economic Development and the Structure of the Demand for Commercial Energy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 29-57.
    35. Hess Chung & Eric M. Leeper, 2007. "What Has Financed Government Debt?," NBER Working Papers 13425, National Bureau of Economic Research, Inc.
    36. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021. "Forecasting regional long-run energy demand: A functional coefficient panel approach," Energy Economics, Elsevier, vol. 96(C).
    37. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    38. Brantley Liddle, 2022. "What Is the Temporal Path of the GDP Elasticity of Energy Consumption in OECD Countries? An Assessment of Previous Findings and New Evidence," Energies, MDPI, vol. 15(10), pages 1-12, May.
    39. Valerie A. Ramey, 2011. "Identifying Government Spending Shocks: It's all in the Timing," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 1-50.
    40. Liddle, Brantley & Smyth, Russell & Zhang, Xibin, 2020. "Time-varying income and price elasticities for energy demand: Evidence from a middle-income panel," Energy Economics, Elsevier, vol. 86(C).
    41. Inglesi-Lotz, R., 2011. "The evolution of price elasticity of electricity demand in South Africa: A Kalman filter application," Energy Policy, Elsevier, vol. 39(6), pages 3690-3696, June.
    42. Qiang Dai & Thomas Philippon, 2005. "Fiscal Policy and the Term Structure of Interest Rates," NBER Working Papers 11574, National Bureau of Economic Research, Inc.
    43. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    44. Lucas, Robert Jr. & Stokey, Nancy L., 1983. "Optimal fiscal and monetary policy in an economy without capital," Journal of Monetary Economics, Elsevier, vol. 12(1), pages 55-93.
    45. Chang, Yoosoon & Kim, Chang Sik & Park, Joon Y., 2016. "Nonstationarity in time series of state densities," Journal of Econometrics, Elsevier, vol. 192(1), pages 152-167.
    46. Olivier Blanchard & Roberto Perotti, 2002. "An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1329-1368.
    47. Yoosoon Chang & Steven N. Durlauf & Seunghee Lee & Joon Y. Park, 2023. "A Trajectories-Based Approach to Measuring Intergenerational Mobility," NBER Working Papers 31020, National Bureau of Economic Research, Inc.
    48. George-Marios Angeletos, 2002. "Fiscal Policy with Noncontingent Debt and the Optimal Maturity Structure," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(3), pages 1105-1131.
    49. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    50. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    51. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    52. Rossana Galli, 1998. "The Relationship Between Energy Intensity and Income Levels: Forecasting Long Term Energy Demand in Asian Emerging Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 85-105.
    53. Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.
    54. Webster, Mort & Paltsev, Sergey & Reilly, John, 2008. "Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?," Energy Economics, Elsevier, vol. 30(6), pages 2785-2798, November.
    55. Park, Sung Y. & Zhao, Guochang, 2010. "An estimation of U.S. gasoline demand: A smooth time-varying cointegration approach," Energy Economics, Elsevier, vol. 32(1), pages 110-120, January.
    56. Arisoy, Ibrahim & Ozturk, Ilhan, 2014. "Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach," Energy, Elsevier, vol. 66(C), pages 959-964.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoosoon Chang & Fabio Gómez-Rodríguez & Christian Matthes, 2023. "The Influence of Fiscal and Monetary Policies on the Shape of the Yield Curve," CAMA Working Papers 2023-65, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Hilde C. Bjørnland & Malin C. Jensen & Leif Anders Thorsrud, 2023. "Business Cycle and Health Dynamics during the COVID-19 Pandemic. A Scandinavian Perspective," Working Papers No 15/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    3. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    4. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021. "Forecasting regional long-run energy demand: A functional coefficient panel approach," Energy Economics, Elsevier, vol. 96(C).
    5. Liddle, Brantley & Smyth, Russell & Zhang, Xibin, 2020. "Time-varying income and price elasticities for energy demand: Evidence from a middle-income panel," Energy Economics, Elsevier, vol. 86(C).
    6. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2016. "Disentangling temporal patterns in elasticities: A functional coefficient panel analysis of electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 232-243.
    7. Max Breitenlechner & Martin Geiger & Mathias Klein, 2024. "The Fiscal Channel of Monetary Policy," Working Papers 2024-07, Faculty of Economics and Statistics, Universität Innsbruck.
    8. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    9. Syed M. Hussain & Lin Liu, 2024. "Macroeconomic effects of discretionary tax changes in Canada: Evidence from a new narrative measure of tax shocks," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 57(1), pages 78-107, February.
    10. Alisdair McKay & Christian K. Wolf, 2023. "What Can Time‐Series Regressions Tell Us About Policy Counterfactuals?," Econometrica, Econometric Society, vol. 91(5), pages 1695-1725, September.
    11. Alloza, Mario & Sanz, Carlos, 2019. "Dynamic Effects of Persistent Shocks," UC3M Working papers. Economics 29187, Universidad Carlos III de Madrid. Departamento de Economía.
    12. Aragón, Edilean Kleber da Silva Bejarano & Galvão, Ana Beatriz, 2023. "Shock-based inference on the Phillips curve with the cost channel," Economic Modelling, Elsevier, vol. 126(C).
    13. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    14. Fotis, Panagiotis & Karkalakos, Sotiris & Asteriou, Dimitrios, 2017. "The relationship between energy demand and real GDP growth rate: The role of price asymmetries and spatial externalities within 34 countries across the globe," Energy Economics, Elsevier, vol. 66(C), pages 69-84.
    15. Brantley Liddle, 2022. "What Is the Temporal Path of the GDP Elasticity of Energy Consumption in OECD Countries? An Assessment of Previous Findings and New Evidence," Energies, MDPI, vol. 15(10), pages 1-12, May.
    16. Jochen Mankart & Romanos Priftis & Rigas Oikonomou, 2022. "The long and short of financing government spending," Working Paper Research 418, National Bank of Belgium.
    17. De Santis, Roberto A. & Tornese, Tommaso, 2024. "US monetary policy is more powerful in low economic growth regimes," Working Paper Series 2919, European Central Bank.
    18. ChaeWon Baek & Byoungchan Lee, 2022. "A Guide to Autoregressive Distributed Lag Models for Impulse Response Estimations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1101-1122, October.
    19. Antje Berndt & Hanno Lustig & Şevin Yeltekin, 2012. "How Does the US Government Finance Fiscal Shocks?," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(1), pages 69-104, January.
    20. Giovanni Angelini & Giovanni Caggiano & Efrem Castelnuovo & Luca Fanelli, 2023. "Are Fiscal Multipliers Estimated with Proxy‐SVARs Robust?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(1), pages 95-122, February.

    More about this item

    Keywords

    energy consumption; energy-GDP elasticity; partially linear semiparametric panel model; functional coefficient panel model;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:2401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chao Gu (email available below). General contact details of provider: https://edirc.repec.org/data/edumous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.