IDEAS home Printed from https://ideas.repec.org/p/ran/wpaper/wr-584.html
   My bibliography  Save this paper

Prediction of Latent Variables in a Mixture of Structural Equation Models, with an Application to the Discrepancy Between Survey and Register Data

Author

Listed:
  • Erik Meijer
  • Susann Rohwedder
  • Tom Wansbeek

Abstract

The authors study the prediction of latent variables in a finite mixture of linear structural equation models. The latent variables can be viewed as well-defined variables measured with error or as theoretical constructs that cannot be measured objectively, but for which proxies are observed. The finite mixture component may serve different purposes: it can denote an unobserved segmentation in subpopulations such as market segments, or it can be used as a nonparametric way to estimate an unknown distribution. In the first interpretation, it forms an additional discrete latent variable in an otherwise continuous latent variable model. Different criteria can be employed to derive “optimal” predictors of the latent variables, leading to a taxonomy of possible predictors. The authors derive the theoretical properties of these predictors. Special attention is given to a mixture that includes components with degenerate distributions. They then apply the theory to the optimal estimation of individual earnings when two independent observations are available: one from survey data and one from register data. The discrete components of the model represent observations with or without measurement error, and with either a correct match or a mismatch between the two data sources.

Suggested Citation

  • Erik Meijer & Susann Rohwedder & Tom Wansbeek, 2008. "Prediction of Latent Variables in a Mixture of Structural Equation Models, with an Application to the Discrepancy Between Survey and Register Data," Working Papers WR-584, RAND Corporation.
  • Handle: RePEc:ran:wpaper:wr-584
    as

    Download full text from publisher

    File URL: https://www.rand.org/content/dam/rand/pubs/working_papers/2008/RAND_WR584.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    2. Schneeweiss, Hans & Cheng, Chi-Lun, 2006. "Bias of the structural quasi-score estimator of a measurement error model under misspecification of the regressor distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 455-473, February.
    3. Robert F. Phillips, 2003. "Estimation of a Stratified Error-Components Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 501-521, May.
    4. Jakob De Haan & Erik Leertouwer & Erik Meijer & Tom Wansbeek, 2003. "Measuring central bank independence: a latent variables approach," Scottish Journal of Political Economy, Scottish Economic Society, vol. 50(3), pages 326-340, August.
    5. Sik-Yum Lee & Xin-Yuan Song, 2003. "Maximum Likelihood Estimation and Model Comparison for Mixtures of Structural Equation Models with Ignorable Missing Data," Journal of Classification, Springer;The Classification Society, vol. 20(2), pages 221-255, September.
    6. Hong-Tu Zhu & Sik-Yum Lee, 2001. "A Bayesian analysis of finite mixtures in the LISREL model," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 133-152, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Meijer & Susann Rohwedder & Tom Wansbeek, 2008. "Prediction of Latent Variables in a Mixture of Structural Equation Models, with an Application to the Discrepancy Between Survey and Register Data," Working Papers 584, RAND Corporation.
    2. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    3. Laisney, François & Pohlmeier, Winfried & Staat, Matthias, 1991. "Estimation of labour supply functions using panel data: a survey," ZEW Discussion Papers 91-05, ZEW - Leibniz Centre for European Economic Research.
    4. John Abowd & Martha Stinson, 2011. "Estimating Measurement Error in SIPP Annual Job Earnings: A Comparison of Census Bureau Survey and SSA Administrative Data," Working Papers 11-20, Center for Economic Studies, U.S. Census Bureau.
    5. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    6. Liran Einav & Ephraim Leibtag & Aviv Nevo, 2010. "Recording discrepancies in Nielsen Homescan data: Are they present and do they matter?," Quantitative Marketing and Economics (QME), Springer, vol. 8(2), pages 207-239, June.
    7. Steven J. Haider & David S. Loughran, 2008. "The Effect of the Social Security Earnings Test on Male Labor Supply: New Evidence from Survey and Administrative Data," Journal of Human Resources, University of Wisconsin Press, vol. 43(1).
    8. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
    9. Rolf Aaberge & Anders Björklund & Markus Jäntti & Mårten Palme & Peder J. Pedersen & Nina Smith & Tom Wennemo, 2002. "Income Inequality and Income Mobility in the Scandinavian Countries Compared to the United States," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 48(4), pages 443-469, December.
    10. Peter Gottschalk & Minh Huynh, 2010. "Are Earnings Inequality and Mobility Overstated? The Impact of Nonclassical Measurement Error," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 302-315, May.
    11. Richard Blundell & Luigi Pistaferri & Itay Saporta-Eksten, 2016. "Consumption Inequality and Family Labor Supply," American Economic Review, American Economic Association, vol. 106(2), pages 387-435, February.
    12. Andrew C. Johnston & Carla Johnston, 2021. "Is Compassion a Good Career Move?: Nonprofit Earnings Differentials from Job Changes," Journal of Human Resources, University of Wisconsin Press, vol. 56(4), pages 1226-1253.
    13. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    14. Michael A. Clemens & Claudio Montenegro & Lant Pritchett, 2016. "Bounding the Price Equivalent of Migration Barriers," CID Working Papers 316, Center for International Development at Harvard University.
    15. Manuel Hernandez & Danilo Trupkin, 2021. "Asset maintenance as hidden investment among the poor and rich: Application to housing," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 40, pages 128-145, April.
    16. Bruce Fallick & Michael Lettau & William L. Wascher, 2016. "Downward Nominal Wage Rigidity in the United States during and after the Great Recession," Working Papers (Old Series) 1602, Federal Reserve Bank of Cleveland.
    17. Georges Bresson & Cheng Hsiao & Alain Pirotte, 2011. "Assessing the contribution of R&D to total factor productivity—a Bayesian approach to account for heterogeneity and heteroskedasticity," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 435-452, December.
    18. Abdurrahman Aydemir & George J. Borjas, 2011. "Attenuation Bias in Measuring the Wage Impact of Immigration," Journal of Labor Economics, University of Chicago Press, vol. 29(1), pages 69-113, January.
    19. Raj Chetty & Nathaniel Hendren & Patrick Kline & Emmanuel Saez, 2014. "Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1553-1623.
    20. Colleen Carey, 2017. "Technological Change and Risk Adjustment: Benefit Design Incentives in Medicare Part D," American Economic Journal: Economic Policy, American Economic Association, vol. 9(1), pages 38-73, February.

    More about this item

    Keywords

    factor scores; measurement error; finite mixture; validation study;
    All these keywords.

    JEL classification:

    • J39 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Other
    • C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ran:wpaper:wr-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benson Wong (email available below). General contact details of provider: https://edirc.repec.org/data/lpranus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.