IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i2p455-473.html
   My bibliography  Save this article

Bias of the structural quasi-score estimator of a measurement error model under misspecification of the regressor distribution

Author

Listed:
  • Schneeweiss, Hans
  • Cheng, Chi-Lun

Abstract

In a structural measurement error model the structural quasi-score (SQS) estimator is based on the distribution of the latent regressor variable. If this distribution is misspecified, the SQS estimator is (asymptotically) biased. Two types of misspecification are considered. Both assume that the statistician erroneously adopts a normal distribution as his model for the regressor distribution. In the first type of misspecification, the true model consists of a mixture of normal distributions which cluster around a single normal distribution, in the second type, the true distribution is a normal distribution admixed with a second normal distribution of low weight. In both cases of misspecification, the bias, of course, tends to zero when the size of misspecification tends to zero. However, in the first case the bias goes to zero in a flat way so that small deviations from the true model lead to a negligible bias, whereas in the second case the bias is noticeable even for small deviations from the true model.

Suggested Citation

  • Schneeweiss, Hans & Cheng, Chi-Lun, 2006. "Bias of the structural quasi-score estimator of a measurement error model under misspecification of the regressor distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 455-473, February.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:2:p:455-473
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00040-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi‐Lun Cheng & Hans Schneeweiss & Markus Thamerus, 2000. "A small sample estimator for a polynomial regression with errors in the variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 699-709.
    2. Alexander Kukush & Hans Schneeweis & Roland Wolf, 2004. "Three estimators for the poisson regression model with measurement errors," Statistical Papers, Springer, vol. 45(3), pages 351-368, July.
    3. Chi‐Lung Cheng & Hans Schneeweiss, 1998. "Polynomial regression with errors in the variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 189-199.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukush Alexander & Shklyar Sergiy & Masiuk Sergii & Likhtarov Illya & Kovgan Lina & Carroll Raymond J & Bouville Andre, 2011. "Methods for Estimation of Radiation Risk in Epidemiological Studies Accounting for Classical and Berkson Errors in Doses," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-30, February.
    2. Erik Meijer & Susann Rohwedder & Tom Wansbeek, 2008. "Prediction of Latent Variables in a Mixture of Structural Equation Models, with an Application to the Discrepancy Between Survey and Register Data," Working Papers WR-584, RAND Corporation.
    3. Erik Meijer & Susann Rohwedder & Tom Wansbeek, 2008. "Prediction of Latent Variables in a Mixture of Structural Equation Models, with an Application to the Discrepancy Between Survey and Register Data," Working Papers 584, RAND Corporation.
    4. Hans Schneeweiss & Thomas Augustin, 2006. "Some recent advances in measurement error models and methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 183-197, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arturo Zavala & Heleno Bolfarine & Mário Castro, 2007. "Consistent estimation and testing in heteroscedastic polynomial errors-in-variables models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 515-530, September.
    2. Thomas Augustin & Helmut Küchenhoff & Matthias Schmid, 2022. "Nachruf Hans Schneeweiß," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(2), pages 149-154, June.
    3. Garcia, Tanya P. & Ma, Yanyuan, 2017. "Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models," Journal of Econometrics, Elsevier, vol. 200(2), pages 194-206.
    4. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    5. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    6. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    7. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    8. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    9. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    10. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    11. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    12. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    13. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    14. Topi Miettinen & Sigrid Suetens, 2008. "Communication and Guilt in a Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 52(6), pages 945-960, December.
    15. Towfiqul Islam Khan & Mashfique Ibne Akbar, 2015. "Illicit Financial Flow in view of Financing the Post-2015 Development Agenda," Southern Voice Occasional Paper 25, Southern Voice.
    16. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    17. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.
    18. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    19. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).
    20. Arzheimer, Kai & Evans, Jocelyn, 2010. "Bread and butter à la française: Multiparty forecasts of the French legislative vote (1981-2007)," International Journal of Forecasting, Elsevier, vol. 26(1), pages 19-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:2:p:455-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.