IDEAS home Printed from https://ideas.repec.org/p/pri/econom/2022-13.html
   My bibliography  Save this paper

When Can We Ignore Measurement Error in the Running Variable?

Author

Listed:
  • Yingying Dong

    (University of California Irvine)

  • Michal Kolesár

    (Princeton University)

Abstract

In many empirical applications of regression discontinuity designs, the running variable used by the administrator to assign treatment is only observed with error. We show that, provided the observed running variable (i) correctly classifies the treatment assignment, and (ii) affects the conditional means of the potential outcomes smoothly, ignoring the measurement error nonetheless yields an estimate with a causal interpretation: the average treatment effect for units with the value of the observed running variable equal to the cutoff. To accommodate various types of measurement error, we propose to conduct inference using recently developed bias-aware methods, which remain valid even when discreteness or irregular support in the observed running variable may lead to partial identification. We illustrate the results for both sharp and fuzzy designs in an empirical application.

Suggested Citation

  • Yingying Dong & Michal Kolesár, 2023. "When Can We Ignore Measurement Error in the Running Variable?," Working Papers 2022-13, Princeton University. Economics Department..
  • Handle: RePEc:pri:econom:2022-13
    as

    Download full text from publisher

    File URL: https://www.princeton.edu/~mkolesar/papers/rd_rounded.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Douglas Almond & Joseph J. Doyle & Amanda E. Kowalski & Heidi Williams, 2010. "Estimating Marginal Returns to Medical Care: Evidence from At-risk Newborns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(2), pages 591-634.
    2. Pei, Zhuan & Shen, Yi, 2016. "The Devil is in the Tails: Regression Discontinuity Design with Measurement Error in the Assignment Variable," IZA Discussion Papers 10320, Institute of Labor Economics (IZA).
    3. Douglas Almond & Joseph J. Doyle & Amanda E. Kowalski & Heidi Williams, 2011. "The Role of Hospital Heterogeneity in Measuring Marginal Returns to Medical Care: A Reply to Barreca, Guldi, Lindo, and Waddell," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(4), pages 2125-2131.
    4. Zhuan Pei & Yi Shen, 2017. "The Devil is in the Tails: Regression Discontinuity Design with Measurement Error in the Assignment Variable," Advances in Econometrics, in: Regression Discontinuity Designs, volume 38, pages 455-502, Emerald Group Publishing Limited.
    5. Whitney K. Newey, 2013. "Nonparametric Instrumental Variables Estimation," American Economic Review, American Economic Association, vol. 103(3), pages 550-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neal, Timothy, 2024. "Estimating the effectiveness of forest protection using regression discontinuity," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).
    2. João R. Ferreira & Wayne Aaron Sandholtz & Wayne Sandholtz, 2024. "Sibling Spillovers and Free Schooling," CESifo Working Paper Series 11436, CESifo.
    3. Pastore, Chiara & Jones, Andrew M., 2023. "Human capital consequences of missing out on a grammar school education," Economic Modelling, Elsevier, vol. 126(C).
    4. Xie, Haitian, 2024. "Nonlinear and nonseparable structural functions in regression discontinuity designs with a continuous treatment," Journal of Econometrics, Elsevier, vol. 242(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    2. Yingying Dong & Michal Kolesár, 2023. "When can we ignore measurement error in the running variable?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 735-750, August.
    3. Rodrigo Carril & Andres Gonzalez-Lira & Michael S. Walker, 2022. "Competition under Incomplete Contracts and the Design of Procurement Policies," Working Papers 1327, Barcelona School of Economics.
    4. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    5. Reif, Simon & Wichert, Sebastian & Wuppermann, Amelie, 2018. "Is it good to be too light? Birth weight thresholds in hospital reimbursement systems," Journal of Health Economics, Elsevier, vol. 59(C), pages 1-25.
    6. Gastón Illanes & Sarah Moshary, 2020. "Market Structure and Product Assortment: Evidence from a Natural Experiment in Liquor Licensure," NBER Working Papers 27016, National Bureau of Economic Research, Inc.
    7. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    8. Strazzeri, Maurizio, 2021. "Assessing the Role of Asylum Policies in Refugees' Labor Market Integration: The Case of Protection Statuses in the German Asylum System," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242395, Verein für Socialpolitik / German Economic Association.
    9. Gallagher, Emily A. & Gopalan, Radhakrishnan & Grinstein-Weiss, Michal, 2019. "The effect of health insurance on home payment delinquency: Evidence from ACA Marketplace subsidies," Journal of Public Economics, Elsevier, vol. 172(C), pages 67-83.
    10. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    11. Deng, Taotao & Hu, Yukun & Ma, Mulan, 2019. "Regional policy and tourism: A quasi-natural experiment," Annals of Tourism Research, Elsevier, vol. 74(C), pages 1-16.
    12. Dean Eckles & Nikolaos Ignatiadis & Stefan Wager & Han Wu, 2020. "Noise-Induced Randomization in Regression Discontinuity Designs," Papers 2004.09458, arXiv.org, revised Nov 2023.
    13. Petek, Nathan, 2022. "The marginal benefit of hospitals: Evidence from the effect of entry and exit on utilization and mortality rates," Journal of Health Economics, Elsevier, vol. 86(C).
    14. Matias D. Cattaneo & Luke Keele & Rocio Titiunik, 2021. "Covariate Adjustment in Regression Discontinuity Designs," Papers 2110.08410, arXiv.org, revised Aug 2022.
    15. Bhalotra, Sonia & Clarke, Damian & Mühlrad, Hanna & Palme, Mårten, 2021. "Health and Labor Market Impacts of Twin Birth : Evidence from a Swedish IVF Policy Mandate," The Warwick Economics Research Paper Series (TWERPS) 1391, University of Warwick, Department of Economics.
    16. Hope Corman & Dhaval Dave & Nancy E. Reichman, 2018. "Evolution of the Infant Health Production Function," Southern Economic Journal, John Wiley & Sons, vol. 85(1), pages 6-47, July.
    17. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1577-1608.
    18. Karen Clay & Joshua A. Lewis & Edson R. Severnini & Xiao Wang, 2020. "The Value of Health Insurance during a Crisis: Effects of Medicaid Implementation on Pandemic Influenza Mortality," NBER Working Papers 27120, National Bureau of Economic Research, Inc.
    19. Colmer, Jonathan & Lin, Dajun & Liu, Siying & Shimshack, Jay, 2021. "Why are pollution damages lower in developed countries? Insights from high-Income, high-particulate matter Hong Kong," Journal of Health Economics, Elsevier, vol. 79(C).
    20. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.

    More about this item

    Keywords

    Running Variable; Measurement Error; Regression Discontinuity Designs; Bias-aware Methods;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pri:econom:2022-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bobray Bordelon (email available below). General contact details of provider: https://edirc.repec.org/data/deprius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.