IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v21y2011i21p1587-1597.html
   My bibliography  Save this article

Small sample properties of copula-GARCH modelling: a Monte Carlo study

Author

Listed:
  • Carluccio Bianchi
  • Maria Elena De Giuli
  • Dean Fantazzini
  • Mario Maggi

Abstract

Copula-GARCH models have been recently proposed in the financial literature as a statistical tool to deal with flexible multivariate distributions. Our extensive simulation studies investigate the small sample properties of these models and examine how misspecification in the marginals may affect the estimation of the dependence function represented by the copula. We show that the use of Normal marginals when the true Data Generating Process (DGP) is leptokurtic or asymmetric, produces negatively biased estimates of the Normal copula correlations. A striking result is that these biases reach their highest value when correlations are strongly negative, and viceversa. This result remains unchanged with both positively skewed and negatively skewed data, while no biases are found if the variables are uncorrelated. Besides, the effect of marginals asymmetry on correlations is smaller than that of leptokurtosis. We finally analyse the performance of these models in terms of numerical convergence and positive definiteness of the estimated copula correlation matrix.

Suggested Citation

  • Carluccio Bianchi & Maria Elena De Giuli & Dean Fantazzini & Mario Maggi, 2011. "Small sample properties of copula-GARCH modelling: a Monte Carlo study," Applied Financial Economics, Taylor & Francis Journals, vol. 21(21), pages 1587-1597.
  • Handle: RePEc:taf:apfiec:v:21:y:2011:i:21:p:1587-1597
    DOI: 10.1080/09603107.2011.587770
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603107.2011.587770
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603107.2011.587770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    4. Chen, Xiaohong & Fan, Yanqin & Patton, Andrew J., 2004. "Simple tests for models of dependence between multiple financial time series, with applications to U.S. equity returns and exchange rates," LSE Research Online Documents on Economics 24681, London School of Economics and Political Science, LSE Library.
    5. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dean Fantazzini, 2022. "Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death," JRFM, MDPI, vol. 15(7), pages 1-34, July.
    2. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    3. Dean Fantazzini, 2024. "Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets," JRFM, MDPI, vol. 17(6), pages 1-44, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd, Prono, 2010. "Simple GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 20034, University Library of Munich, Germany.
    2. Jing-Yi Lai, 2012. "An empirical study of the impact of skewness and kurtosis on hedging decisions," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1827-1837, December.
    3. Todd, Prono, 2009. "Simple, Skewness-Based GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 30994, University Library of Munich, Germany, revised 30 Jul 2011.
    4. Nour Meddahi & Eric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
    5. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    6. Babsiri, Mohamed El & Zakoian, Jean-Michel, 2001. "Contemporaneous asymmetry in GARCH processes," Journal of Econometrics, Elsevier, vol. 101(2), pages 257-294, April.
    7. Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
    8. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    9. Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
    10. Carlos Escanciano, J., 2008. "Joint and marginal specification tests for conditional mean and variance models," Journal of Econometrics, Elsevier, vol. 143(1), pages 74-87, March.
    11. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    12. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    13. Krenar AVDULAJ & Jozef BARUNIK, 2013. "Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
    14. Luc, BAUWENS & Walid, BEN OMRANE & Erick, Rengifo, 2006. "Intra-Daily FX Optimal Portfolio Allocation," Discussion Papers (ECON - Département des Sciences Economiques) 2006005, Université catholique de Louvain, Département des Sciences Economiques.
    15. Laïb Naâmane & Lemdani Mohamed & Ould Saïd Elias, 2013. "A functional conditional symmetry test for a GARCH-SM model: Power asymptotic properties," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 75-104, March.
    16. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    17. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    18. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    19. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    20. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.

    More about this item

    Keywords

    copulas; copula-GARCH models; maximum likelihood; simulation; small sample properties;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:21:p:1587-1597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.