Small sample properties of copula-GARCH modelling: a Monte Carlo study
Author
Abstract
Suggested Citation
DOI: 10.1080/09603107.2011.587770
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Carluccio Bianchi & Dean Fantazzini & Maria Elena De Giuli & Mario Maggi, 2009. "Small Sample Properties of Copula-GARCH Modelling: A Monte Carlo Study," Quaderni di Dipartimento 093, University of Pavia, Department of Economics and Quantitative Methods.
References listed on IDEAS
- Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Hansen, Bruce E, 1994.
"Autoregressive Conditional Density Estimation,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
- Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
- Chen, Xiaohong & Fan, Yanqin & Patton, Andrew J., 2004. "Simple tests for models of dependence between multiple financial time series, with applications to U.S. equity returns and exchange rates," LSE Research Online Documents on Economics 24681, London School of Economics and Political Science, LSE Library.
- Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dean Fantazzini, 2022.
"Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death,"
JRFM, MDPI, vol. 15(7), pages 1-34, July.
- Fantazzini, Dean, 2022. "Crypto Coins and Credit Risk: Modelling and Forecasting their Probability of Death," MPRA Paper 113744, University Library of Munich, Germany.
- Fantazzini, Dean & Shangina, Tamara, 2019.
"The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
- Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," MPRA Paper 95992, University Library of Munich, Germany.
- Dean Fantazzini, 2024.
"Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets,"
JRFM, MDPI, vol. 17(6), pages 1-44, June.
- Fantazzini, Dean, 2024. "Adaptive Conformal Inference for computing Market Risk Measures: an Analysis with Four Thousands Crypto-Assets," MPRA Paper 121214, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Todd, Prono, 2010. "Simple GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 20034, University Library of Munich, Germany.
- Jing-Yi Lai, 2012. "An empirical study of the impact of skewness and kurtosis on hedging decisions," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1827-1837, December.
- Todd, Prono, 2009. "Simple, Skewness-Based GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 30994, University Library of Munich, Germany, revised 30 Jul 2011.
- Nour Meddahi & Eric Renault, 1998.
"Quadratic M-Estimators for ARCH-Type Processes,"
CIRANO Working Papers
98s-29, CIRANO.
- MEDDAHI, Nour & RENAULT, Éric, 1998. "Quadratic M-Estimators for ARCH-Type Processes," Cahiers de recherche 9814, Universite de Montreal, Departement de sciences economiques.
- Zhu, Ke & Li, Wai Keung, 2013.
"A new Pearson-type QMLE for conditionally heteroskedastic models,"
MPRA Paper
52344, University Library of Munich, Germany.
- Zhu, Ke & Li, Wai Keung, 2014. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52732, University Library of Munich, Germany.
- Babsiri, Mohamed El & Zakoian, Jean-Michel, 2001.
"Contemporaneous asymmetry in GARCH processes,"
Journal of Econometrics, Elsevier, vol. 101(2), pages 257-294, April.
- M, El Babsiri & Jean-Michel Zakoïan, 1997. "Contemporaneous Asymmetry in GARCH Processes," Working Papers 97-03, Center for Research in Economics and Statistics.
- Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
- Andrew J. Patton, 2006.
"Estimation of multivariate models for time series of possibly different lengths,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
- Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173.
- Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
- Carlos Escanciano, J., 2008. "Joint and marginal specification tests for conditional mean and variance models," Journal of Econometrics, Elsevier, vol. 143(1), pages 74-87, March.
- Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012.
"Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range,"
International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Working Papers in Economics 11/22, University of Canterbury, Department of Economics and Finance.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
- Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," Documentos de Trabajo del ICAE 2011-16, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chen, C.W.S. & Gerlach, R. & Hwang, B.B.K. & McAleer, M.J., 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range," Econometric Institute Research Papers EI 2011-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Mohamed CHIKHI & Claude DIEBOLT, 2022.
"Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation,"
Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
- Mohamed CHIKHI & Claude DIEBOLT, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers of BETA 2021-36, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Mohamed Chikhi & Claude Diebolt, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Post-Print hal-03778331, HAL.
- Claude Diebolt & Mohamed Chikhi, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers 09-21, Association Française de Cliométrie (AFC).
- Krenar AVDULAJ & Jozef BARUNIK, 2013.
"Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets,"
Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
- Krenar Avdulaj & Jozef Barunik, 2013. "Can we still benefit from international diversification? The case of the Czech and German stock markets," Papers 1308.6120, arXiv.org, revised Sep 2013.
- Luc, BAUWENS & Walid, BEN OMRANE & Erick, Rengifo, 2006.
"Intra-Daily FX Optimal Portfolio Allocation,"
Discussion Papers (ECON - Département des Sciences Economiques)
2006005, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & BEN OMRANE, Walid & RENGIFO, Erick, 2006. "Intra-daily FX optimal portfolio allocation," LIDAM Discussion Papers CORE 2006010, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Laïb Naâmane & Lemdani Mohamed & Ould Saïd Elias, 2013. "A functional conditional symmetry test for a GARCH-SM model: Power asymptotic properties," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 75-104, March.
- Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
- Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
- Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007.
"Practical Volatility and Correlation Modeling for Financial Market Risk Management,"
NBER Chapters, in: The Risks of Financial Institutions, pages 513-544,
National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Working Papers 11069, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," PIER Working Paper Archive 05-007, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Practical volatility and correlation modeling for financial market risk management," CFS Working Paper Series 2005/02, Center for Financial Studies (CFS).
- Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
More about this item
Keywords
copulas; copula-GARCH models; maximum likelihood; simulation; small sample properties;All these keywords.
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:21:p:1587-1597. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.