IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i4p848-863.html
   My bibliography  Save this article

Volatility measures and Value-at-Risk

Author

Listed:
  • Bams, Dennis
  • Blanchard, Gildas
  • Lehnert, Thorsten

Abstract

We evaluate and compare the abilities of the implied volatility and historical volatility models to provide accurate Value-at-Risk forecasts. Our empirical tests on the S&P 500, Dow Jones Industrial Average and Nasdaq 100 indices over long time series of more than 20 years of daily data indicate that an implied volatility based Value-at-Risk cannot beat, and tends to be outperformed by, a simple GJR-GARCH based Value-at-Risk. This finding is robust to the use of the likelihood ratio, the dynamic quantile test or a statistical loss function for evaluating the Value-at-Risk performance.

Suggested Citation

  • Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:848-863
    DOI: 10.1016/j.ijforecast.2017.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207017300511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2017.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    3. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    4. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    5. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    6. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    7. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    8. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    9. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    10. Peter Christoffersen & Stefano Mazzotta, 2005. "The Accuracy of Density Forecasts from Foreign Exchange Options," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 578-605.
    11. Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
    12. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," The Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
    13. Charlie Charoenwong & Nattawut Jenwittayaroje & Buen Sin Low, 2009. "Who knows more about future currency volatility?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(3), pages 270-295, March.
    14. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    15. Jooyoung Jeon & James W. Taylor, 2013. "Using CAViaR Models with Implied Volatility for Value‐at‐Risk Estimation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 62-74, January.
    16. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    17. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    18. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    19. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    20. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.
    21. Bali, Turan G. & Zhou, Hao, 2016. "Risk, Uncertainty, and Expected Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(3), pages 707-735, June.
    22. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    23. Chernov, Mikhail, 2007. "On the Role of Risk Premia in Volatility Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 411-426, October.
    24. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    25. Yu, Wayne W. & Lui, Evans C.K. & Wang, Jacqueline W., 2010. "The predictive power of the implied volatility of options traded OTC and on exchanges," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 1-11, January.
    26. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    27. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    28. Mixon, Scott, 2009. "Option markets and implied volatility: Past versus present," Journal of Financial Economics, Elsevier, vol. 94(2), pages 171-191, November.
    29. James Chong, 2004. "Value at risk from econometric models and implied from currency options," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 603-620.
    30. Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2010. "The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 871-881, April.
    31. repec:bla:jfinan:v:44:y:1989:i:4:p:1011-23 is not listed on IDEAS
    32. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    33. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    34. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    35. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    36. Charles J. Corrado & Thomas W. Miller, Jr., 2005. "The forecast quality of CBOE implied volatility indexes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(4), pages 339-373, April.
    37. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    38. Prokopczuk, Marcel & Wese Simen, Chardin, 2014. "The importance of the volatility risk premium for volatility forecasting," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 303-320.
    39. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    40. Bart Frijns & Christian Tallau & Alireza Tourani‐Rad, 2010. "The information content of implied volatility: Evidence from Australia," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(2), pages 134-155, February.
    41. GIOT, Pierre, 2005. "Implied volatility indexes and daily Value at Risk models," LIDAM Reprints CORE 1840, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    42. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    43. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    44. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    45. Beckers, Stan, 1981. "Standard deviations implied in option prices as predictors of future stock price variability," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 363-381, September.
    46. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    47. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    48. Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
    49. Xin Cheng & Joseph K.W. Fung, 2012. "The Information Content of Model‐Free Implied Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(8), pages 792-806, August.
    50. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eyden Samunderu & Yvonne T. Murahwa, 2021. "Return Based Risk Measures for Non-Normally Distributed Returns: An Alternative Modelling Approach," JRFM, MDPI, vol. 14(11), pages 1-48, November.
    2. Prodosh Simlai, 2021. "Accrual mispricing, value-at-risk, and expected stock returns," Review of Quantitative Finance and Accounting, Springer, vol. 57(4), pages 1487-1517, November.
    3. Jakub Micha'nk'ow & {L}ukasz Kwiatkowski & Janusz Morajda, 2023. "Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting," Papers 2310.01063, arXiv.org.
    4. Slim, Skander & Dahmene, Meriam & Boughrara, Adel, 2020. "How informative are variance risk premium and implied volatility for Value-at-Risk prediction? International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 22-37.
    5. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    6. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    7. Arian, Hamid & Moghimi, Mehrdad & Tabatabaei, Ehsan & Zamani, Shiva, 2022. "Encoded Value-at-Risk: A machine learning approach for portfolio risk measurement," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 500-525.
    8. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    9. Federico Gatta & Fabrizio Lillo & Piero Mazzarisi, 2024. "CAESar: Conditional Autoregressive Expected Shortfall," Papers 2407.06619, arXiv.org.
    10. Zou, Yingchao & Yu, Lean & Tso, Geoffrey K.F. & He, Kaijian, 2020. "Risk forecasting in the crude oil market: A multiscale Convolutional Neural Network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Slim, Skander & Dahmene, Meriam & Boughrara, Adel, 2020. "How informative are variance risk premium and implied volatility for Value-at-Risk prediction? International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 22-37.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2019. "Forecasting the KOSPI200 spot volatility using various volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 156-166.
    4. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    5. Murad Samsudin, Najmi Ismail & Mohamad, Azhar & Sifat, Imtiaz Mohammad, 2021. "Implied volatility of structured warrants: Emerging market evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 464-479.
    6. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    7. Kim, Jun Sik & Ryu, Doojin, 2015. "Are the KOSPI 200 implied volatilities useful in value-at-risk models?," Emerging Markets Review, Elsevier, vol. 22(C), pages 43-64.
    8. Prokopczuk, Marcel & Wese Simen, Chardin, 2014. "The importance of the volatility risk premium for volatility forecasting," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 303-320.
    9. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    10. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    11. Apostolos Kourtis & Raphael N. Markellos & Lazaros Symeonidis, 2016. "An International Comparison of Implied, Realized, and GARCH Volatility Forecasts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1164-1193, December.
    12. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    13. Ewa Ratuszny, 2015. "Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 129-156.
    14. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    15. Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
    16. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).
    17. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    18. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    19. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    20. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:848-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.