IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/94359.html
   My bibliography  Save this paper

Labour-use Efficiency in the Italian Machinery Industry: a Non-parametric Stochastic Frontier Perspective

Author

Listed:
  • Ferrara, Giancarlo
  • Vidoli, Francesco
  • Canello, Jacopo
  • Campagna, Arianna

Abstract

Firms’ efficiency is a mainstream in the study of economic growth. Within this broad research area, the present work, conducted as part of the research activities of SOSE S.p.A., analyses the labour use efficiency in the Italian machinery industry through the application of a non-parametric stochastic frontier model with the aim of suggesting new insights to better understand the recent dynamics of the Italian manufacturing system. An extended panel data of manufacturing Small and Medium Enterprises (SMEs) operating in the mechanical industry for the period 2002-2012 has been extracted (in anonymous form) from the Italian Ministry of Economy and Finance annual survey and used for the implementation of the proposed method. Results show the presence of a persistent level of labour-use inefficiency in the sample used for the analysis: this issue is particularly evident for the subset of firms using non standard jobs, while firms entitled to access to wage redundancy fund appear to have achieved higher levels of efficiency in labour input use on average. The analysis also shows that the inefficiency gap between the two subsets of firms tends to reduce in absolute terms over time

Suggested Citation

  • Ferrara, Giancarlo & Vidoli, Francesco & Canello, Jacopo & Campagna, Arianna, 2013. "Labour-use Efficiency in the Italian Machinery Industry: a Non-parametric Stochastic Frontier Perspective," MPRA Paper 94359, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:94359
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/94359/1/MPRA_paper_94359.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Bassanini & Luca Nunziata & Danielle Venn, 2009. "Job protection legislation and productivity growth in OECD countries [Appropriate growth policy: a unifying framework]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(58), pages 349-402.
    2. Matteo PICCHIO, 2006. "Wage Differentials between Temporary and Permanent Workers in Italy," Working Papers 257, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    3. Sergio Destefanis & Raquel Fonseca, 2007. "Matching Efficiency and Labour Market Reform in Italy: A Macroeconometric Assessment," LABOUR, CEIS, vol. 21(1), pages 57-84, March.
    4. Tito Boeri & Pietro Garibaldi, 2007. "Two Tier Reforms of Employment Protection: a Honeymoon Effect?," Economic Journal, Royal Economic Society, vol. 117(521), pages 357-385, June.
    5. Francesco Vidoli & Giancarlo Ferrara, 2015. "Analyzing Italian citrus sector by semi-nonparametric frontier efficiency models," Empirical Economics, Springer, vol. 49(2), pages 641-658, September.
    6. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    7. Federico Lucidi & Alfred Kleinknecht, 2010. "Little innovation, many jobs: An econometric analysis of the Italian labour productivity crisis," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 34(3), pages 525-546.
    8. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    9. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    10. Subal Kumbhakar & Rui Zhang, 2013. "Labor-use efficiency and employment elasticity in Chinese manufacturing," ECONOMIA E POLITICA INDUSTRIALE, FrancoAngeli Editore, vol. 2013(1), pages 5-23.
    11. Fare, Rolf & Grosskopf, Shawna & Kokkelenberg, Edward C, 1989. "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 655-666, August.
    12. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    13. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    14. Cooper, William W. & Seiford, Lawrence M. & Zhu, Joe, 2000. "A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 34(1), pages 1-25, March.
    15. Maria Carla Congia & Silvia Pacini, 2012. "La stima da fonti amministrative di indicatori retributivi congiunturali al netto della cassa integrazione guadagni," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 14(2-3), pages 19-40.
    16. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    17. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    18. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    19. Kumbhakar, Subal C & Hjalmarsson, Lennart, 1995. "Labour-Use Efficiency in Swedish Social Insurance Offices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(1), pages 33-47, Jan.-Marc.
    20. Mr. Martin Schindler, 2009. "The Italian Labor Market: Recent Trends, Institutions, and Reform Options," IMF Working Papers 2009/047, International Monetary Fund.
    21. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrara, Giancarlo & Vidoli, Francesco, 2017. "Semiparametric stochastic frontier models: A generalized additive model approach," European Journal of Operational Research, Elsevier, vol. 258(2), pages 761-777.
    2. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    3. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    4. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    5. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    6. Ferrara, Giancarlo & Bucci, Valeria & Campagna, Arianna, 2023. "Audit, presumptive taxation and efficiency: An integrated approach for tax compliance analysis," Economic Systems, Elsevier, vol. 47(3).
    7. Federico Belotti & Giancarlo Ferrara, 2019. "Imposing monotonicity in stochastic frontier models: an iterative nonlinear least squares procedure," CEIS Research Paper 462, Tor Vergata University, CEIS, revised 29 Jan 2021.
    8. ferrara, giancarlo & campagna, arianna & bucci, valeria & atella, vincenzo, 2021. "Presumptive taxation and firms’ efficiency: an integrated approach for tax compliance analysis," MPRA Paper 111516, University Library of Munich, Germany.
    9. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    10. repec:wvu:wpaper:10-09 is not listed on IDEAS
    11. Tran, Kien C. & Tsionas, Efthymios G., 2009. "Estimation of nonparametric inefficiency effects stochastic frontier models with an application to British manufacturing," Economic Modelling, Elsevier, vol. 26(5), pages 904-909, September.
    12. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    13. Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
    14. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    15. Francesco Vidoli & Giancarlo Ferrara, 2015. "Analyzing Italian citrus sector by semi-nonparametric frontier efficiency models," Empirical Economics, Springer, vol. 49(2), pages 641-658, September.
    16. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    17. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    18. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    19. Fan Zhang & Joshua Hall & Feng Yao, 2018. "Does Economic Freedom Affect The Production Frontier? A Semiparametric Approach With Panel Data," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1380-1395, April.
    20. Mark Andor & Christopher Parmeter, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.
    21. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.

    More about this item

    Keywords

    Labour-use efficiency; Stochastic frontier; SMEs; GAM; Splines;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • H2 - Public Economics - - Taxation, Subsidies, and Revenue
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:94359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.