IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v47y2017i3d10.1007_s11123-016-0479-x.html
   My bibliography  Save this article

Nonparametric estimation of the determinants of inefficiency

Author

Listed:
  • Christopher F. Parmeter

    (University of Miami)

  • Hung-Jen Wang

    (National Taiwan University
    Academia Sinica)

  • Subal C. Kumbhakar

    (State University of New York at Binghamton
    University of Stavanger Business School)

Abstract

We consider the benchmark stochastic frontier model where inefficiency is directly influenced by observable determinants. In this setting, we estimate the stochastic frontier and the conditional mean of inefficiency without imposing any distributional assumptions. To do so we cast this model in the partly linear regression framework for the conditional mean. We provide a test of correct parametric specification of the scaling function. An empirical example is also provided to illustrate the practical value of the methods described here.

Suggested Citation

  • Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
  • Handle: RePEc:kap:jproda:v:47:y:2017:i:3:d:10.1007_s11123-016-0479-x
    DOI: 10.1007/s11123-016-0479-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-016-0479-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-016-0479-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christine Amsler & Peter Schmidt & Wen-Jen Tsay, 2015. "A post-truncation parameterization of truncated normal technical inefficiency," Journal of Productivity Analysis, Springer, vol. 44(2), pages 209-220, October.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. Henderson, Daniel J. & Kumbhakar, Subal C. & Parmeter, Christopher F., 2012. "A simple method to visualize results in nonlinear regression models," Economics Letters, Elsevier, vol. 117(3), pages 578-581.
    4. Hayashi, Fumio, 1985. "Corporate finance side of the Q theory of investment," Journal of Public Economics, Elsevier, vol. 27(3), pages 261-280, August.
    5. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    6. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    7. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    8. Steven M. Fazzari & R. Glenn Hubbard & Bruce C. Petersen, 1988. "Financing Constraints and Corporate Investment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 19(1), pages 141-206.
    9. Carlos Martins-Filho & Feng Yao, 2015. "Semiparametric Stochastic Frontier Estimation via Profile Likelihood," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 413-451, April.
    10. Wollni, Meike & Brümmer, Bernhard, 2012. "Productive efficiency of specialty and conventional coffee farmers in Costa Rica: Accounting for technological heterogeneity and self-selection," Food Policy, Elsevier, vol. 37(1), pages 67-76.
    11. Sean Cleary, 1999. "The Relationship between Firm Investment and Financial Status," Journal of Finance, American Finance Association, vol. 54(2), pages 673-692, April.
    12. Li, Qi, 1996. "On the root-N-consistent semiparametric estimation of partially linear models," Economics Letters, Elsevier, vol. 51(3), pages 277-285, June.
    13. Qi Gao & Long Liu & Jeffrey S. Racine, 2015. "A Partially Linear Kernel Estimator for Categorical Data," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 959-978, December.
    14. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    15. Qi Li & Jeffrey Wooldridge, 2000. "Estimating Semiparametric Econometrics Models by Local Linear Method: With an Application to Cross-Country Growth," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 337-357, November.
    16. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    17. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    18. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    19. Wang, Hung-Jen, 2003. "A Stochastic Frontier Analysis of Financing Constraints on Investment: The Case of Financial Liberalization in Taiwan," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 406-419, July.
    20. Tran, Kien C. & Tsionas, Efthymios G., 2009. "Estimation of nonparametric inefficiency effects stochastic frontier models with an application to British manufacturing," Economic Modelling, Elsevier, vol. 26(5), pages 904-909, September.
    21. Waldman, Donald M., 1982. "A stationary point for the stochastic frontier likelihood," Journal of Econometrics, Elsevier, vol. 18(2), pages 275-279, February.
    22. Steven N. Kaplan & Luigi Zingales, 2000. "Investment-Cash Flow Sensitivities Are Not Valid Measures of Financing Constraints," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(2), pages 707-712.
    23. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    24. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    25. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    26. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    27. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2015. "Testing the "Separability" Condition in Two-Stage Nonparametric Models of Production," LIDAM Discussion Papers ISBA 2015018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    28. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    29. Pang Du & Christopher F. Parmeter & Jeffrey S. Racine, 2012. "Nonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints," Department of Economics Working Papers 2012-08, McMaster University.
    30. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    31. Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521279680, September.
    32. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    33. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    34. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    35. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    36. Peter Schmidt, 2011. "One-step and two-step estimation in SFA models," Journal of Productivity Analysis, Springer, vol. 36(2), pages 201-203, October.
    37. Li, Q. & Wang, Suojin, 1998. "A simple consistent bootstrap test for a parametric regression function," Journal of Econometrics, Elsevier, vol. 87(1), pages 145-165, August.
    38. Parmeter, Christopher F. & Kumbhakar, Subal C., 2014. "Efficiency Analysis: A Primer on Recent Advances," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(3-4), pages 191-385, December.
    39. Steven N. Kaplan & Luigi Zingales, 1997. "Do Investment-Cash Flow Sensitivities Provide Useful Measures of Financing Constraints?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 112(1), pages 169-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2021. "Density deconvolution with Laplace errors and unknown variance," Journal of Productivity Analysis, Springer, vol. 56(2), pages 103-113, December.
    2. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    3. Luis Orea & Jevgenijs Steinbuks, 2018. "Estimating Market Power In Homogenous Product Markets Using A Composed Error Model: Application To The California Electricity Market," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1296-1321, April.
    4. Deng, Yaguo, 2024. "A Bayesian semi-parametric approach to stochastic frontier models with inefficiency heterogeneity," DES - Working Papers. Statistics and Econometrics. WS 43837, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Tadesse Getacher Engida & Christopher F. Parmeter & Xudong Rao & Alfons G.J.M. Oude Lansink, 2022. "Investment Inefficiency and Corporate Social Responsibility," Journal of Productivity Analysis, Springer, vol. 58(1), pages 95-108, August.
    6. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    7. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    8. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    9. Jun Cai & William C. Horrace & Christopher F. Parmeter, 2024. "Penalized sieve estimation of zero‐inefficiency stochastic frontiers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 41-65, January.
    10. Václava Pánková, 2019. "Are efficient firms motivated to invest? Evidence of manufacture of motor vehicles in Czech Republic," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(3), pages 67-76.
    11. Christopher F. Parmeter, 2018. "Estimation of the two-tiered stochastic frontier model with the scaling property," Journal of Productivity Analysis, Springer, vol. 49(1), pages 37-47, February.
    12. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    13. Tsionas, Mike G., 2021. "Optimal combinations of stochastic frontier and data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 294(2), pages 790-800.
    14. Paul, Satya & Shankar, Sriram, 2018. "On estimating efficiency effects in a stochastic frontier model," European Journal of Operational Research, Elsevier, vol. 271(2), pages 769-774.
    15. Alessandro Bonanno & Francesco Bimbo & Marco Costanigro & Alfons Oude Lansink & Rosaria Viscecchia, 2019. "Credence attributes and the quest for a higher price – a hedonic stochastic frontier approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(2), pages 163-192.
    16. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    17. Cheng, Ming-Yen & Wang, Shouxia & Xia, Lucy & Zhang, Xibin, 2024. "Testing specification of distribution in stochastic frontier analysis," Journal of Econometrics, Elsevier, vol. 239(2).
    18. Fan Zhang & Joshua Hall & Feng Yao, 2018. "Does Economic Freedom Affect The Production Frontier? A Semiparametric Approach With Panel Data," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1380-1395, April.
    19. Giovanni Forchini & Raoul Theler, 2023. "Semi-parametric modelling of inefficiencies in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 59(2), pages 135-152, April.
    20. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    21. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    22. Mike G. Tsionas & Subal C. Kumbhakar, 2023. "Proxy variable estimation of productivity and efficiency," Southern Economic Journal, John Wiley & Sons, vol. 89(3), pages 885-923, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    2. Tadesse Getacher Engida & Christopher F. Parmeter & Xudong Rao & Alfons G.J.M. Oude Lansink, 2022. "Investment Inefficiency and Corporate Social Responsibility," Journal of Productivity Analysis, Springer, vol. 58(1), pages 95-108, August.
    3. Giovanni Forchini & Raoul Theler, 2023. "Semi-parametric modelling of inefficiencies in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 59(2), pages 135-152, April.
    4. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    5. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    6. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    7. Paul, Satya & Shankar, Sriram, 2018. "On estimating efficiency effects in a stochastic frontier model," European Journal of Operational Research, Elsevier, vol. 271(2), pages 769-774.
    8. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    9. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    10. Ajayi, V. & Weyman-Jones, T., 2021. "State-Level Electricity Generation Efficiency: Do Restructuring and Regulatory Institutions Matter in the US?," Cambridge Working Papers in Economics 2166, Faculty of Economics, University of Cambridge.
    11. Ajayi, Victor & Weyman-Jones, Tom, 2021. "State-level electricity generation efficiency: Do restructuring and regulatory institutions matter in the US?," Energy Economics, Elsevier, vol. 104(C).
    12. Tran, Kien C. & Tsionas, Efthymios G., 2009. "Estimation of nonparametric inefficiency effects stochastic frontier models with an application to British manufacturing," Economic Modelling, Elsevier, vol. 26(5), pages 904-909, September.
    13. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    14. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.
    15. Cheol-Keun Cho & Peter Schmidt, 2020. "The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables," Empirical Economics, Springer, vol. 58(5), pages 2031-2047, May.
    16. Christopher F. Parmeter & Valentin Zelenyuk, 2016. "A Bridge Too Far? The State of the Art in Combining the Virtues of Stochastic Frontier Analysis and Data Envelopement Analysis," Working Papers 2016-10, University of Miami, Department of Economics.
    17. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    18. Young Hoon Lee, 2009. "Frontier Models and their Application to the Sports Industry," Working Papers 0903, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised 2009.
    19. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    20. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.

    More about this item

    Keywords

    Partly linear; Heteroskedasticity; Kernel; Bandwidth;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:47:y:2017:i:3:d:10.1007_s11123-016-0479-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.