IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v49y2017i55p5651-5661.html
   My bibliography  Save this article

Pseudolikelihood estimation of the stochastic frontier model

Author

Listed:
  • Mark Andor
  • Christopher Parmeter

Abstract

Stochastic frontier analysis is a popular tool to assess firm performance. Almost universally it has been applied using maximum likelihood (ML) estimation. An alternative approach, pseudolikelihood (PL) estimation, which decouples estimation of the error component structure and the production frontier, has been adopted in both the non-parametric and panel data settings. To date, no formal comparison has yet to be conducted comparing these methods in a standard, parametric cross-sectional framework. We produce a comparison of these two competing methods using Monte Carlo simulations. Our results indicate that PL estimation enjoys almost identical performance to ML estimation across a range of scenarios and performance metrics, and for certain metrics, outperforms ML estimation when the distribution of inefficiency is incorrectly specified.

Suggested Citation

  • Mark Andor & Christopher Parmeter, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.
  • Handle: RePEc:taf:applec:v:49:y:2017:i:55:p:5651-5661
    DOI: 10.1080/00036846.2017.1324611
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2017.1324611
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2017.1324611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    2. Henderson, Daniel J. & Kumbhakar, Subal C. & Li, Qi & Parmeter, Christopher F., 2015. "Smooth coefficient estimation of a seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 148-162.
    3. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    4. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    5. repec:zbw:rwirep:0394 is not listed on IDEAS
    6. Timo Kuosmanen & Mogens Fosgerau, 2009. "Neoclassical versus Frontier Production Models? Testing for the Skewness of Regression Residuals," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 351-367, June.
    7. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    8. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    9. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    10. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    11. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    12. Behr, Andreas & Tente, Sebastian, 2008. "Stochastic frontier analysis by means of maximum likelihood and the method of moments," Discussion Paper Series 2: Banking and Financial Studies 2008,19, Deutsche Bundesbank.
    13. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107609464, September.
    14. Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
    15. Oleg Badunenko & Daniel J. Henderson & Subal C. Kumbhakar, 2012. "When, where and how to perform efficiency estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 863-892, October.
    16. Reifschneider, David & Stevenson, Rodney, 1991. "Systematic Departures from the Frontier: A Framework for the Analysis of Firm Inefficiency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 715-723, August.
    17. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    18. Christopher Parmeter & Kai Sun & Daniel Henderson & Subal Kumbhakar, 2014. "Estimation and inference under economic restrictions," Journal of Productivity Analysis, Springer, vol. 41(1), pages 111-129, February.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, October.
    21. Parmeter, Christopher F. & Kumbhakar, Subal C., 2014. "Efficiency Analysis: A Primer on Recent Advances," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(3-4), pages 191-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Recommended Reading for October
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2017-10-04 23:08:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumbhakar, Subal C. & Peresetsky, Anatoly & Shchetynin, Yevgenii & Zaytsev, Alexey, 2020. "Technical efficiency and inefficiency: Reassurance of standard SFA models and a misspecification problem," MPRA Paper 102797, University Library of Munich, Germany.
    2. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    3. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    4. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    5. José Luis Preciado Arreola & Daisuke Yagi & Andrew L. Johnson, 2020. "Insights from machine learning for evaluating production function estimators on manufacturing survey data," Journal of Productivity Analysis, Springer, vol. 53(2), pages 181-225, April.
    6. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    7. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    8. Juan Agar & William C. Horrace & Christopher F. Parmeter, 2022. "Overcapacity in Gulf of Mexico reef fish IFQ fisheries: 12 years after the adoption of IFQs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(2), pages 483-506, June.
    9. Brian Tavonga Mazorodze, 2024. "Access to finance and intra-Africa trade efficiency," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-14, December.
    10. Christopher F. Parmeter & Valentin Zelenyuk, 2016. "A Bridge Too Far? The State of the Art in Combining the Virtues of Stochastic Frontier Analysis and Data Envelopement Analysis," Working Papers 2016-10, University of Miami, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    2. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    3. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    4. Ajayi, Victor & Weyman-Jones, Tom, 2021. "State-level electricity generation efficiency: Do restructuring and regulatory institutions matter in the US?," Energy Economics, Elsevier, vol. 104(C).
    5. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    6. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    7. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    8. Sakouvogui Kekoura & Shaik Saleem & Doetkott Curt & Magel Rhonda, 2021. "Sensitivity analysis of stochastic frontier analysis models," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 71-90, March.
    9. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    10. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    11. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    12. Yao, Feng & Wang, Taining & Tian, Jinjing & Kumbhakar, Subal C., 2018. "Estimation of a smooth coefficient zero-inefficiency panel stochastic frontier model: A semiparametric approach," Economics Letters, Elsevier, vol. 166(C), pages 25-30.
    13. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    14. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    15. Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
    16. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    17. Stefan Seifert, 2016. "Semi-Parametric Measures of Scale Characteristics of German Natural Gas-Fired Electricity Generation," Discussion Papers of DIW Berlin 1571, DIW Berlin, German Institute for Economic Research.
    18. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    19. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    20. Fan Zhang & Joshua Hall & Feng Yao, 2018. "Does Economic Freedom Affect The Production Frontier? A Semiparametric Approach With Panel Data," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 1380-1395, April.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • D2 - Microeconomics - - Production and Organizations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:49:y:2017:i:55:p:5651-5661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.