IDEAS home Printed from https://ideas.repec.org/a/bla/rgscpp/v13y2021i1p7-24.html
   My bibliography  Save this article

A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union

Author

Listed:
  • Cristina Polo
  • Julián Ramajo
  • Alejandro Ricci‐Risquete

Abstract

This paper uses a novel semi‐non‐parametric approach, the so‐called stochastic non‐parametric envelopment on Z‐variables data (StoNEZD), to measure the performance of 279 European regions (in 28 EU member states and Norway) in the years 2000, 2007, and 2014. The StoNEZD approach combines the main virtues of the parametric and non‐parametric methods in a unifying framework. The proposed model accounts explicitly for the presence of contextual/exogenous factors that might affect the regional performance and allows for the use of statistical inference methods to explore the effects of such variables (agriculture‐to‐ gross value added (GVA) share, employment rate, and euro area membership). According to our results, a larger agriculture‐to‐GVA ratio has a negative impact on regional growth rates, whereas a higher employment rate has a positive influence on regional economic levels. In overall terms, the euro area membership appears to reduce regional average growth rates but seems to enhance regional average efficiency scores. Este trabajo utiliza un novedoso enfoque semi no paramétrico, conocido como análisis envolvente estocástico no paramétrico sobre datos de Z variables (StoNEZD, por sus siglas en inglés), para medir el desempeño de 279 regiones europeas (en 28 estados miembros de la UE y Noruega) en los años 2000, 2007 y 2014. El enfoque StoNEZD combina las principales virtudes de los métodos paramétricos y no paramétricos en un solo marco. El modelo propuesto tiene en cuenta explícitamente la presencia de factores contextuales o exógenos que podrían afectar el desempeño regional y posibilita el uso de métodos de inferencia estadística para explorar los efectos de esas variables (contribución de la agricultura al valor añadido bruto (VAB), la tasa de empleo y la pertenencia a la zona del euro). De acuerdo con los resultados, una mayor contribución de la agricultura al VAB tiene un efecto negativo en las tasas de crecimiento regional, mientras que una tasa de empleo más elevada influye positivamente en los niveles económicos regionales. En términos generales, la pertenencia a la zona del euro parece reducir las tasas promedio de crecimiento regional, pero parece mejorar los valores regionales promedio de eficiencia. 土地データは計画立案と行政に非常に重要であるが、開発途上国においてこのリソースは管理が不十分かつ利用できない場合が多い。最近独立した国では、データが削除されるなど問題が深刻化しており、新たな取り組みが必要となっている。この問題に対処するため、東ティモールにおける土地データを統合する際の法的、行政的、技術的な問題の解決策を検討し、提案する。ユーザーの視点から、データ・アクセス・インターフェースのプロトタイプを作成しテストした。このプロトタイプの実行可能性と、国土を所管する国家機関と公的と民間の両方の利害関係者に対する有用性を測定した。このプロトタイプは実用的であり、東ティモールにおける将来の土地情報システム (LIS)のあるべきかたちを予測するのに役立つことが分かった。

Suggested Citation

  • Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
  • Handle: RePEc:bla:rgscpp:v:13:y:2021:i:1:p:7-24
    DOI: 10.1111/rsp3.12305
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rsp3.12305
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rsp3.12305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Axel Schaffer & Léopold Simar & Jan Rauland, 2011. "Decomposing Regional Efficiency," Journal of Regional Science, Wiley Blackwell, vol. 51(5), pages 931-947, December.
    2. Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
    3. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    4. Camilla Mastromarco & Léopold Simar, 2015. "Effect of FDI and Time on Catching Up: New Insights from a Conditional Nonparametric Frontier Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 826-847, August.
    5. Subhash C. Ray & Subal C. Kumbhakar & Pami Dua (ed.), 2015. "Benchmarking for Performance Evaluation," Springer Books, Springer, edition 127, number 978-81-322-2253-8, June.
    6. Kerstin Enflo & Per Hjertstrand, 2009. "Relative Sources of European Regional Productivity Convergence: A Bootstrap Frontier Approach," Regional Studies, Taylor & Francis Journals, vol. 43(5), pages 643-659.
    7. ALVARO ANGERIZ & JOHN McCOMBIE & MARK ROBERTS, 2006. "Productivity, Efficiency And Technological Change In European Union Regional Manufacturing: A Data Envelopment Analysis Approach," Manchester School, University of Manchester, vol. 74(4), pages 500-525, July.
    8. Daisuke Yagi & Yining Chen & Andrew L. Johnson & Timo Kuosmanen, 2020. "Shape-Constrained Kernel-Weighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 43-54, January.
    9. Francesco Vidoli & Giancarlo Ferrara, 2015. "Analyzing Italian citrus sector by semi-nonparametric frontier efficiency models," Empirical Economics, Springer, vol. 49(2), pages 641-658, September.
    10. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    11. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    12. Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2017. "Specification of merger gains in the Norwegian electricity distribution industry," Energy Policy, Elsevier, vol. 102(C), pages 96-107.
    13. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    14. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    15. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    16. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    17. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2014. "Cost Efficiency Analysis based on The DEA and StoNED Models: Case of Norwegian Electricity Distribution Companies," Discussion Papers 2014/28, Norwegian School of Economics, Department of Business and Management Science.
    18. Ferrara, Giancarlo & Vidoli, Francesco, 2017. "Semiparametric stochastic frontier models: A generalized additive model approach," European Journal of Operational Research, Elsevier, vol. 258(2), pages 761-777.
    19. Efthymios G. Tsionas & Panayotis G. Michaelides, 2016. "A Spatial Stochastic Frontier Model with Spillovers: Evidence for Italian Regions," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(3), pages 243-257, July.
    20. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    21. George EMM. Halkos & Nickolaos G. Tzeremes, 2011. "Modelling Regional Welfare Efficiency Applying Conditional Full Frontiers," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 451-471, July.
    22. Julián Ramajo & Geoffrey J. D. Hewings, 2018. "Modelling regional productivity performance across Western Europe," Regional Studies, Taylor & Francis Journals, vol. 52(10), pages 1372-1387, October.
    23. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    24. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    25. Theodore Tsekeris & Sotiris Papaioannou, 2018. "Regional determinants of technical efficiency: evidence from the Greek economy," Regional Studies, Taylor & Francis Journals, vol. 52(10), pages 1398-1409, October.
    26. Andrew L. Johnson & Timo Kuosmanen, 2015. "An Introduction to CNLS and StoNED Methods for Efficiency Analysis: Economic Insights and Computational Aspects," Springer Books, in: Subhash C. Ray & Subal C. Kumbhakar & Pami Dua (ed.), Benchmarking for Performance Evaluation, edition 127, chapter 0, pages 117-186, Springer.
    27. Andrea Filippetti & Antonio Peyrache, 2015. "Labour Productivity and Technology Gap in European Regions: A Conditional Frontier Approach," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 532-554, April.
    28. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    29. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    30. Mekaroonreung, Maethee & Johnson, Andrew L., 2014. "A nonparametric method to estimate a technical change effect on marginal abatement costs of U.S. coal power plants," Energy Economics, Elsevier, vol. 46(C), pages 45-55.
    31. Saastamoinen, Antti & Kuosmanen, Timo, 2016. "Quality frontier of electricity distribution: Supply security, best practices, and underground cabling in Finland," Energy Economics, Elsevier, vol. 53(C), pages 281-292.
    32. Ramajo, Julián & Márquez, Miguel A. & Hewings, Geoffrey J.D. & Salinas, María M., 2008. "Spatial heterogeneity and interregional spillovers in the European Union: Do cohesion policies encourage convergence across regions?," European Economic Review, Elsevier, vol. 52(3), pages 551-567, April.
    33. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    34. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    35. Camilla Mastromarco & Laura Serlenga & Yongcheol Shin, 2016. "Modelling Technical Efficiency in Cross Sectionally Dependent Stochastic Frontier Panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 281-297, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
    2. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    3. Ferrara, Giancarlo & Vidoli, Francesco, 2017. "Semiparametric stochastic frontier models: A generalized additive model approach," European Journal of Operational Research, Elsevier, vol. 258(2), pages 761-777.
    4. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    5. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    6. Jose Manuel Cordero & Cristina Polo & Javier Salinas-Jiménez, 2021. "Subjective Well-Being and Heterogeneous Contexts: A Cross-National Study Using Semi-Nonparametric Frontier Methods," Journal of Happiness Studies, Springer, vol. 22(2), pages 867-886, February.
    7. Alexander Arévalo S & Víctor Giménez G & Diego Prior J, 2022. "Análisis de eficiencia en educación: una aplicación del método StoNED," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, vol. 92(2), pages 45-91, October.
    8. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    9. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    10. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    11. Delnava, Haleh & Khosravi, Ali & El Haj Assad, Mamdouh, 2023. "Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)," Renewable Energy, Elsevier, vol. 213(C), pages 195-204.
    12. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    13. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    14. Liu, Fangmei & Li, Li & Ye, Bin & Qin, Quande, 2023. "A novel stochastic semi-parametric frontier-based three-stage DEA window model to evaluate China's industrial green economic efficiency," Energy Economics, Elsevier, vol. 119(C).
    15. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    16. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    17. Stefan Seifert, 2016. "Semi-Parametric Measures of Scale Characteristics of German Natural Gas-Fired Electricity Generation," Discussion Papers of DIW Berlin 1571, DIW Berlin, German Institute for Economic Research.
    18. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    19. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    20. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rgscpp:v:13:y:2021:i:1:p:7-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1757-7802 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.