IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/91395.html
   My bibliography  Save this paper

Where is Kenya being headed to? Empirical evidence from the Box-Jenkins ARIMA approach

Author

Listed:
  • NYONI, THABANI

Abstract

Using annual time series data on GDP per capita in Kenya from 1960 to 2017, the study analyzes GDP per capita using the Box – Jenkins ARIMA technique. The diagnostic tests such as the ADF tests show that Kenyan GDP per capita data is I (2). Based on the AIC, the study presents the ARIMA (3, 2, 1) model. The diagnostic tests further show that the presented parsimonious model is stable and reliable. The results of the study indicate that living standards in Kenya will improve over the next decade, as long as the prudent macroeconomic management continues in Kenya. Indeed, Kenya’s economy is growing. The study offers 3 policy prescriptions in an effort to help policy makers in Kenya on how to promote and maintain the much needed growth.

Suggested Citation

  • Nyoni, Thabani, 2019. "Where is Kenya being headed to? Empirical evidence from the Box-Jenkins ARIMA approach," MPRA Paper 91395, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:91395
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/91395/1/MPRA_paper_91395.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Haiyan & Witt, Stephen F. & Jensen, Thomas C., 2003. "Tourism forecasting: accuracy of alternative econometric models," International Journal of Forecasting, Elsevier, vol. 19(1), pages 123-141.
    2. du Preez, Johann & Witt, Stephen F., 2003. "Univariate versus multivariate time series forecasting: an application to international tourism demand," International Journal of Forecasting, Elsevier, vol. 19(3), pages 435-451.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara & Bertrand Pluyaud, 2012. "Monthly Gdp Forecasting Using Bridge Models: Application For The French Economy," Bulletin of Economic Research, Wiley Blackwell, vol. 64(Supplemen), pages 53-70, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyoni, Thabani, 2019. "Is South Africa the South Africa we all desire? Insights from the Box-Jenkins ARIMA approach," MPRA Paper 92441, University Library of Munich, Germany.
    2. Nyoni, Thabani, 2019. "Where is Eritrea going in terms of population growth? Insights from the ARIMA approach," MPRA Paper 92435, University Library of Munich, Germany.
    3. Stephen F. Witt & Haiyan Song & Stephen Wanhill, 2004. "Forecasting Tourism-Generated Employment: The Case of Denmark," Tourism Economics, , vol. 10(2), pages 167-176, June.
    4. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    5. Nyoni, Thabani, 2019. "A Box-Jenkins ARIMA approach to the population question in Pakistan: A reliable prognosis," MPRA Paper 92434, University Library of Munich, Germany.
    6. Nyoni, Thabani, 2019. "The population question in Zimbabwe: reliable projections from the Box – Jenkins ARIMA approach," MPRA Paper 96791, University Library of Munich, Germany.
    7. Nyoni, Thabani, 2019. "Can Algeria be the first African country to outsmart the Malthusian population trap? Insights from the ARIMA approach," MPRA Paper 92425, University Library of Munich, Germany.
    8. Nyoni, Thabani, 2019. "What will be Botswana's population in 2050? Evidence from the Box-Jenkins approach," MPRA Paper 93977, University Library of Munich, Germany.
    9. Nyoni, Thabani, 2019. "Modeling and forecasting population in Bangladesh: a Box-Jenkins ARIMA approach," MPRA Paper 91394, University Library of Munich, Germany.
    10. Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
    11. Nyoni, Thabani & Muchingami, Lovemore, 2019. "Modeling and forecasting Botswana's Growth Domestic Product (GDP) per capita," MPRA Paper 93987, University Library of Munich, Germany.
    12. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    13. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    14. Nyoni, Thabani & Mutongi, Chipo, 2019. "Prediction of total population in Togo using ARIMA models," MPRA Paper 93983, University Library of Munich, Germany.
    15. Coshall, John T. & Charlesworth, Richard, 2011. "A management orientated approach to combination forecasting of tourism demand," Tourism Management, Elsevier, vol. 32(4), pages 759-769.
    16. Nyoni, Thabani, 2019. "Predicting total population in India: A Box-Jenkins ARIMA approach," MPRA Paper 92436, University Library of Munich, Germany.
    17. Nyoni, Thabani & Mutongi, Chipo, 2019. "Modeling and forecasting carbon dioxide emissions in China using Autoregressive Integrated Moving Average (ARIMA) models," MPRA Paper 93984, University Library of Munich, Germany.
    18. Nyoni, Thabani, 2019. "Forecasting the population of Brazil using the Box-Jenkins ARIMA approach," MPRA Paper 92437, University Library of Munich, Germany.
    19. Nyoni, Thabani, 2019. "Addressing the population question in Mexico: A Box-Jenkins ARIMA approach," MPRA Paper 92440, University Library of Munich, Germany.
    20. Willem A. Naudé & Andrea Saayman, 2005. "Determinants of Tourist Arrivals in Africa: A Panel Data Regression Analysis," Tourism Economics, , vol. 11(3), pages 365-391, September.

    More about this item

    Keywords

    GDP per capita; forecasting; Kenya;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:91395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.