IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v10y2004i2p167-176.html
   My bibliography  Save this article

Forecasting Tourism-Generated Employment: The Case of Denmark

Author

Listed:
  • Stephen F. Witt

    (School of Management, University of Surrey, Guildford, Surrey GU2 7XH, UK)

  • Haiyan Song

    (School of Management, University of Surrey, Guildford, Surrey GU2 7XH, UK)

  • Stephen Wanhill

    (International Centre for Tourism and Hospitality Research, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK)

Abstract

The empirical results from a forecasting competition show that the unrestricted vector autoregressive model is likely to generate the most accurate forecasts of international tourist expenditure in Denmark. This model is therefore estimated (using data for 1969–99) and is used to generate tourism expenditure forecasts for Denmark to 2010. The employment requirements (direct, indirect and induced) associated with these expenditure forecasts are then estimated using an input–output model. The forecasts of employment demands are shown across all industrial sectors, and linked to qualifications data in respect of the labour force. The major impacts of foreign tourist expenditure on employment in Denmark occur in the retail, hotel and restaurant sectors. Foreign tourist expenditure is also significantly associated with graduate employment.

Suggested Citation

  • Stephen F. Witt & Haiyan Song & Stephen Wanhill, 2004. "Forecasting Tourism-Generated Employment: The Case of Denmark," Tourism Economics, , vol. 10(2), pages 167-176, June.
  • Handle: RePEc:sae:toueco:v:10:y:2004:i:2:p:167-176
    DOI: 10.5367/000000004323142407
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5367/000000004323142407
    Download Restriction: no

    File URL: https://libkey.io/10.5367/000000004323142407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Song, Haiyan & Witt, Stephen F. & Jensen, Thomas C., 2003. "Tourism forecasting: accuracy of alternative econometric models," International Journal of Forecasting, Elsevier, vol. 19(1), pages 123-141.
    2. du Preez, Johann & Witt, Stephen F., 2003. "Univariate versus multivariate time series forecasting: an application to international tourism demand," International Journal of Forecasting, Elsevier, vol. 19(3), pages 435-451.
    3. Lindsay W. Turner & Stephen F. Witt, 2001. "Forecasting Tourism Using Univariate and Multivariate Structural Time Series Models," Tourism Economics, , vol. 7(2), pages 135-147, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apergis Nicholas, 2021. "Forecasting US overseas travelling with univariate and multivariate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 963-976, September.
    2. El houssin Ouassou & Hafsa Taya, 2022. "Forecasting Regional Tourism Demand in Morocco from Traditional and AI-Based Methods to Ensemble Modeling," Forecasting, MDPI, vol. 4(2), pages 1-18, April.
    3. KETENCI, Natalya, 2010. "Cointegration Analysis Of Tourism Demand For Turkey," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 10(1).
    4. Ketenci, Natalya, 2009. "The ARDL Approach to Cointegration Analysis of Tourism Demand in Turkey: with Greece as the substitution destination," MPRA Paper 86602, University Library of Munich, Germany.
    5. Jong, Meng-Chang & Hong, Puah & Arip, Mohammad Affendy, 2020. "Modelling Tourism Demand: An Augmented Gravity Model," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(2), pages 105-112.
    6. Apostolos Ampountolas, 2019. "Forecasting hotel demand uncertainty using time series Bayesian VAR models," Tourism Economics, , vol. 25(5), pages 734-756, August.
    7. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    8. Wenxing Lu & Jieyu Jin & Binyou Wang & Keqing Li & Changyong Liang & Junfeng Dong & Shuping Zhao, 2020. "Intelligence in Tourist Destinations Management: Improved Attention-based Gated Recurrent Unit Model for Accurate Tourist Flow Forecasting," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    9. Petrevska, Biljana, 2012. "Forecasting International Tourism Demand: The Evidence Of Macedonia," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 3(1), pages 45-55.
    10. Gunter, Ulrich & Önder, Irem, 2015. "Forecasting international city tourism demand for Paris: Accuracy of uni- and multivariate models employing monthly data," Tourism Management, Elsevier, vol. 46(C), pages 123-135.
    11. Assaf, A. George & Tsionas, Mike G., 2019. "Forecasting occupancy rate with Bayesian compression methods," Annals of Tourism Research, Elsevier, vol. 75(C), pages 439-449.
    12. Kazutaka Kurasawa, 2016. "Chinese Economic Growth and Visitors to Japan: A Bivariate Cointegration Analysis," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 4(4), pages 168-179, December.
    13. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    2. Elisa Jorge-González & Enrique González-Dávila & Raquel Martín-Rivero & Domingo Lorenzo-Díaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
    3. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    4. Guizzardi, Andrea & Mazzocchi, Mario, 2010. "Tourism demand for Italy and the business cycle," Tourism Management, Elsevier, vol. 31(3), pages 367-377.
    5. Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
    6. Nyoni, Thabani, 2019. "Where is Eritrea going in terms of population growth? Insights from the ARIMA approach," MPRA Paper 92435, University Library of Munich, Germany.
    7. Niematallah Elamin & Mototsugu Fukushige, 2018. "Forecasting extreme seasonal tourism demand: the case of Rishiri Island in Japan," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 279-296, August.
    8. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    9. Nyoni, Thabani, 2019. "A Box-Jenkins ARIMA approach to the population question in Pakistan: A reliable prognosis," MPRA Paper 92434, University Library of Munich, Germany.
    10. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    11. Nyoni, Thabani, 2019. "The population question in Zimbabwe: reliable projections from the Box – Jenkins ARIMA approach," MPRA Paper 96791, University Library of Munich, Germany.
    12. Nyoni, Thabani, 2019. "Can Algeria be the first African country to outsmart the Malthusian population trap? Insights from the ARIMA approach," MPRA Paper 92425, University Library of Munich, Germany.
    13. Nyoni, Thabani, 2019. "What will be Botswana's population in 2050? Evidence from the Box-Jenkins approach," MPRA Paper 93977, University Library of Munich, Germany.
    14. Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
    15. Nyoni, Thabani, 2019. "Modeling and forecasting population in Bangladesh: a Box-Jenkins ARIMA approach," MPRA Paper 91394, University Library of Munich, Germany.
    16. Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
    17. Nyoni, Thabani & Muchingami, Lovemore, 2019. "Modeling and forecasting Botswana's Growth Domestic Product (GDP) per capita," MPRA Paper 93987, University Library of Munich, Germany.
    18. Jo C. Vu, 2006. "Effect of Demand Volume on Forecasting Accuracy," Tourism Economics, , vol. 12(2), pages 263-276, June.
    19. Nyoni, Thabani, 2019. "Is South Africa the South Africa we all desire? Insights from the Box-Jenkins ARIMA approach," MPRA Paper 92441, University Library of Munich, Germany.
    20. Nyoni, Thabani & Mutongi, Chipo, 2019. "Prediction of total population in Togo using ARIMA models," MPRA Paper 93983, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:10:y:2004:i:2:p:167-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.