IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/86553.html
   My bibliography  Save this paper

Exploring Brexit with dynamic spatial panel models : some possible outcomes for employment across the EU regions

Author

Listed:
  • Fingleton, Bernard

Abstract

Starting with a reduced form derived from standard urban economics theory, this paper estimates the possible job-shortfall across UK and EU regions using a time-space dynamic panel data model with a Spatial Moving Average Random Effects (SMA-RE) structure of the disturbances. The paper provides a logical rational for the presence of spatial and temporal dependencies involving the endogenous variable, leading to estimates based on a dynamic spatial Generalized Moments (GM) estimator proposed by Baltagi, Fingleton and Pirotte (2018). Given state-of-the art interregional trade estimates, the simulations are based on a linear predictor which utilizes different regional interdependency matrices according to assumptions about interregional trade post-Brexit.

Suggested Citation

  • Fingleton, Bernard, 2018. "Exploring Brexit with dynamic spatial panel models : some possible outcomes for employment across the EU regions," MPRA Paper 86553, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:86553
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/86553/1/MPRA_paper_86553.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/87203/8/MPRA_paper_87203.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Justin Doran & Bernard Fingleton, 2014. "Economic shocks and growth: Spatio-temporal perspectives on Europe's economies in a time of crisis," Papers in Regional Science, Wiley Blackwell, vol. 93, pages 137-165, November.
    2. Bernard Fingleton, 2008. "A Generalized Method of Moments Estimator for a Spatial Panel Model with an Endogenous Spatial Lag and Spatial Moving Average Errors," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(1), pages 27-44.
    3. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    4. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    5. Nicolas DEBARSY (CERPE De Namur) & Cem ERTUR & James P. LeSAGE, 2010. "Interpreting Dynamic Space-Time Panel Data Models," LEO Working Papers / DR LEO 800, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    6. Philip McCann, 2018. "The trade, geography and regional implications of Brexit," Papers in Regional Science, Wiley Blackwell, vol. 97(1), pages 3-8, March.
    7. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    8. Magee, Christopher S.P., 2008. "New measures of trade creation and trade diversion," Journal of International Economics, Elsevier, vol. 75(2), pages 349-362, July.
    9. Mark Thissen & Frank van Oort & Dario Diodato & Arjan Ruijs, 2013. "Regional Competitiveness and Smart Specialization in Europe," Books, Edward Elgar Publishing, number 15331.
    10. Stephen Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers CWP09/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Ciccone, Antonio & Hall, Robert E, 1996. "Productivity and the Density of Economic Activity," American Economic Review, American Economic Association, vol. 86(1), pages 54-70, March.
    12. Bernard Fingleton & Julie Gallo & Alain Pirotte, 2018. "A multidimensional spatial lag panel data model with spatial moving average nested random effects errors," Empirical Economics, Springer, vol. 55(1), pages 113-146, August.
    13. Bowsher, Clive G., 2002. "On testing overidentifying restrictions in dynamic panel data models," Economics Letters, Elsevier, vol. 77(2), pages 211-220, October.
    14. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    15. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    16. Fingleton, Bernard & Szumilo, Nikodem, 2019. "Simulating the impact of transport infrastructure investment on wages: A dynamic spatial panel model approach," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 148-164.
    17. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    18. Bart Los & Philip McCann & John Springford & Mark Thissen, 2017. "The mismatch between local voting and the local economic consequences of Brexit," Regional Studies, Taylor & Francis Journals, vol. 51(5), pages 786-799, May.
    19. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    20. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    21. Stephen R. Bond, 2002. "Dynamic panel data models: a guide to micro data methods and practice," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 141-162, August.
    22. J. Derbyshire & B. Gardiner & S. Waights, 2013. "Estimating the capital stock for the NUTS2 regions of the EU27," Applied Economics, Taylor & Francis Journals, vol. 45(9), pages 1133-1149, March.
    23. Wolfang Polasek & Carlos Llano & Richard Sellner, 2010. "Bayesian Methods for Completing Data in Spatial Models," Review of Economic Analysis, Digital Initiatives at the University of Waterloo Library, vol. 2(2), pages 194-214, June.
    24. Halleck Vega, Solmaria & Elhorst, J. Paul, 2016. "A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 85-95.
    25. Bernard Fingleton & Harry Garretsen & Ron Martin, 2015. "Shocking aspects of monetary union: the vulnerability of regions in Euroland," Journal of Economic Geography, Oxford University Press, vol. 15(5), pages 907-934.
    26. Anne O. Krueger, 1999. "Trade Creation and Trade Diversion Under NAFTA," NBER Working Papers 7429, National Bureau of Economic Research, Inc.
    27. Pesaran, M. Hashem, 2015. "Time Series and Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780198759980.
    28. Salima Bouayad-Agha & Lionel Védrine, 2010. "Estimation Strategies for a Spatial Dynamic Panel using GMM. A New Approach to the Convergence Issue of European Regions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(2), pages 205-227.
    29. Mark Thissen & Frank Van Oort & Dario Diodato, 2013. "Integration and Convergence in Regional Europe: European Regional Trade Flows from 2000 to 2010," ERSA conference papers ersa13p1116, European Regional Science Association.
    30. Parent, Olivier & LeSage, James P., 2012. "Spatial dynamic panel data models with random effects," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 727-738.
    31. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    32. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Romagnoli & Paola Di Renzo & Luigi Mastronardi, 2022. "Modelling Income Drivers in Peripheral Municipalities: The Case of Italian Inner Areas," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    2. Roberta Capello & Andrea Caragliu, 2021. "Merging macroeconomic and territorial determinants of regional growth: the MASST4 model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 66(1), pages 19-56, February.
    3. Bernard Fingleton, 2022. "Modifying the linear two-step Windmeijer correction for the presence of spatial error dependence," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    2. Bernard Fingleton, 2020. "Italexit, is it another Brexit?," Journal of Geographical Systems, Springer, vol. 22(1), pages 77-104, January.
    3. Fingleton, Bernard & Szumilo, Nikodem, 2019. "Simulating the impact of transport infrastructure investment on wages: A dynamic spatial panel model approach," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 148-164.
    4. Bernard Fingleton & Franz Fuerst & Nikodem Szumilo, 2019. "Housing affordability: Is new local supply the key?," Environment and Planning A, , vol. 51(1), pages 25-50, February.
    5. Fingleton Bernard & Gardiner Ben & Martin Ron & Barbieri Luca, 2023. "The impact of brexit on regional productivity in the UK," ZFW – Advances in Economic Geography, De Gruyter, vol. 67(2-3), pages 142-160, August.
    6. Bernard Fingleton, 2023. "Estimating dynamic spatial panel data models with endogenous regressors using synthetic instruments," Journal of Geographical Systems, Springer, vol. 25(1), pages 121-152, January.
    7. Bernard Fingleton & Daniel Olner & Gwilym Pryce, 2020. "Estimating the local employment impacts of immigration: A dynamic spatial panel model," Urban Studies, Urban Studies Journal Limited, vol. 57(13), pages 2646-2662, October.
    8. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    9. Bernard Fingleton, 2016. "Regional Science in a time of uncertainty," REGION, European Regional Science Association, vol. 3, pages 61-69.
    10. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    11. Bernard Fingleton & Julie Gallo & Alain Pirotte, 2018. "A multidimensional spatial lag panel data model with spatial moving average nested random effects errors," Empirical Economics, Springer, vol. 55(1), pages 113-146, August.
    12. Justin Doran & Bernard Fingleton, 2018. "US Metropolitan Area Resilience: Insights from dynamic spatial panel estimation," Environment and Planning A, , vol. 50(1), pages 111-132, February.
    13. Luisa Corrado & Bernard Fingleton, 2016. "The W Matrix in Network and Spatial Econometrics: Issues Relating to Specification and Estimation," CEIS Research Paper 369, Tor Vergata University, CEIS, revised 12 Feb 2016.
    14. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    15. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    16. Castro, Lucio, 2007. "Infrastructure and the Location of Foreign Direct Investment A Regional Analysis," MPRA Paper 6736, University Library of Munich, Germany.
    17. Bernard Fingleton, 2014. "Forecasting with dynamic spatial panel data: practical implementation methods," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 194-207.
    18. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    19. Hujer Reinhard & Rodrigues Paulo J. M. & Wolf Katja, 2008. "Dynamic Panel Data Models with Spatial Correlation," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(5-6), pages 612-629, October.
    20. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.

    More about this item

    Keywords

    Brexit; Interregional trade; Urban economics theory; Panel data; Spatial lag; Spatio-temporal lag; Dynamic; Spatial moving average; Prediction; Simulation.;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • F10 - International Economics - - Trade - - - General
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:86553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.