IDEAS home Printed from https://ideas.repec.org/p/srt/wpaper/1915.html
   My bibliography  Save this paper

Weak and Strong cross-sectional dependence: a panel data analysis of international technology diffusion

Author

Listed:
  • Cem Ertur

    (University of Orleans UMR 6221, CNRS Faculté de Droit d’Economie et de Gestion. Rue de Blois - B.P. 6739 45067 Orléans Cedex 2,France)

  • Antonio Musolesi

    (Department of Economics and Management (DEM), University of Ferrara, and SEEDS, Via Voltapaletto 11, 44100 Ferrara - Italy.)

Abstract

This paper provides an econometric examination of geographic R&D spillovers among countries by focusing on the issue of cross-sectional dependence, and in particular on the different ways – weak and strong – it may affect the model. A preliminary analysis based on the estimation of the exponent of cross-sectional correlation proposed by Bailey et al.(2013), a, provides a very clear-cut result with an estimate of a very close to unity, not only indicating the presence of strong cross-sectional correlation but also being consistent with the factor literature typically assuming that a = 1. Moreover, second generation unit roots tests suggest that while the unobserved idiosyncratic component of the variables under study may be stationary, the unobserved common factors appear to be nonstationary. Consequently, a factor structure appears to be preferable to a spatial error model and in particular the Correlated Common Effects approach is employed since, among other things, it is still valid in the more general case of nonstationary common factors. Finally, comparing the results with those obtained with a spatial model gives some insights on the possible bias occurring when allowing only for weak correlation while strong correlation is present in the data.

Suggested Citation

  • Cem Ertur & Antonio Musolesi, 2015. "Weak and Strong cross-sectional dependence: a panel data analysis of international technology diffusion," SEEDS Working Papers 1915, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2015.
  • Handle: RePEc:srt:wpaper:1915
    as

    Download full text from publisher

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/1915.pdf
    File Function: First version, 2015
    Download Restriction: no

    File URL: http://www.sustainability-seeds.org/papers/RePec/srt/wpaper/1915.pdf
    File Function: Revised version, 2015
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    2. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 83-116.
    3. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    4. Eberhardt, Markus & Teal, Francis, 2008. "Modeling technology and technological change in manufacturing: how do countries differ?," MPRA Paper 10690, University Library of Munich, Germany.
    5. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    6. Bruno Van Pottelsberghe De La Potterie & Frank Lichtenberg, 2001. "Does Foreign Direct Investment Transfer Technology Across Borders?," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 490-497, August.
    7. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    8. Sarafidis, Vasilis, 2009. "GMM Estimation of Short Dynamic Panel Data Models With Error Cross-Sectional Dependence," MPRA Paper 25176, University Library of Munich, Germany.
    9. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    10. Musolesi, Antonio, 2007. "Basic stocks of knowledge and productivity: Further evidence from the hierarchical Bayes estimator," Economics Letters, Elsevier, vol. 95(1), pages 54-59, April.
    11. Chihwa Kao & Min‐Hsien Chiang & Bangtian Chen, 1999. "International R&D Spillovers: An Application of Estimation and Inference in Panel Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 691-709, November.
    12. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    13. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    14. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    15. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    16. Enrico Spolaore & Romain Wacziarg, 2009. "The Diffusion of Development," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(2), pages 469-529.
    17. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2002. "Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity and natural-gas consumption," Economics Letters, Elsevier, vol. 76(3), pages 375-382, August.
    18. Paul Krugman & Anthony J. Venables, 1995. "Globalization and the Inequality of Nations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(4), pages 857-880.
    19. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    20. Engelbrecht, Hans-Jurgen, 1997. "International R&D spillovers, human capital and productivity in OECD economies: An empirical investigation," European Economic Review, Elsevier, vol. 41(8), pages 1479-1488, August.
    21. Steve Bond & Asli Leblebicioglu & Fabio Schiantarelli, 2010. "Capital accumulation and growth: a new look at the empirical evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(7), pages 1073-1099, November/.
    22. Coe, David T. & Helpman, Elhanan & Hoffmaister, Alexander W., 2009. "International R&D spillovers and institutions," European Economic Review, Elsevier, vol. 53(7), pages 723-741, October.
    23. Moon, H.R.Hyungsik Roger & Perron, Benoit, 2004. "Testing for a unit root in panels with dynamic factors," Journal of Econometrics, Elsevier, vol. 122(1), pages 81-126, September.
    24. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    25. Luciano Gutierrez, 2006. "Panel Unit‐root Tests for Cross‐sectionally Correlated Panels: A Monte Carlo Comparison," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(4), pages 519-540, August.
    26. Georges Bresson & Badi H. Baltagi & Alain Pirotte, 2007. "Panel unit root tests and spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 339-360.
    27. Mastromarco Camilla & Laura Serlenga & Yongcheol Shin, 2013. "Globalisation and technological convergence in the EU," Journal of Productivity Analysis, Springer, vol. 40(1), pages 15-29, August.
    28. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    29. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    30. Bierens, Herman J., 1997. "Testing the unit root with drift hypothesis against nonlinear trend stationarity, with an application to the US price level and interest rate," Journal of Econometrics, Elsevier, vol. 81(1), pages 29-64, November.
    31. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    32. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    33. repec:hhs:iuiwop:430 is not listed on IDEAS
    34. Julie Le Gallo & Catherine Baumont & Sandy Dall'erba & Cem Ertur, 2005. "On the property of diffusion in the spatial error model," Applied Economics Letters, Taylor & Francis Journals, vol. 12(9), pages 533-536.
    35. Hsiao,Cheng & Pesaran,M. Hashem & Lahiri,Kajal & Lee,Lung Fei (ed.), 1999. "Analysis of Panels and Limited Dependent Variable Models," Cambridge Books, Cambridge University Press, number 9780521631693, September.
    36. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    37. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    38. Lichtenberg, Frank R. & Pottelsberghe de la Potterie, Bruno v., 1998. "International R&D spillovers: A comment," European Economic Review, Elsevier, vol. 42(8), pages 1483-1491, September.
    39. Christophe Hurlin, 2010. "What would Nelson and Plosser find had they used panel unit root tests?," Applied Economics, Taylor & Francis Journals, vol. 42(12), pages 1515-1531.
    40. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    41. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    42. Barro, Robert J & Lee, Jong-Wha, 2001. "International Data on Educational Attainment: Updates and Implications," Oxford Economic Papers, Oxford University Press, vol. 53(3), pages 541-563, July.
    43. Psacharopoulos, George, 1994. "Returns to investment in education: A global update," World Development, Elsevier, vol. 22(9), pages 1325-1343, September.
    44. Corbae,Dean & Durlauf,Steven N. & Hansen,Bruce E. (ed.), 2006. "Econometric Theory and Practice," Cambridge Books, Cambridge University Press, number 9780521807234, September.
    45. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    46. repec:bla:obuest:v:61:y:1999:i:0:p:691-709 is not listed on IDEAS
    47. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    48. Benoit Perron & Hyungsik Roger Moon, 2007. "An empirical analysis of nonstationarity in a panel of interest rates with factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 383-400.
    49. Massimiliano Mazzanti & Antonio Musolesi, 2013. "The heterogeneity of carbon Kuznets curves for advanced countries: comparing homogeneous, heterogeneous and shrinkage/Bayesian estimators," Applied Economics, Taylor & Francis Journals, vol. 45(27), pages 3827-3842, September.
    50. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    51. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    52. Eberhardt, Markus & Bond, Stephen, 2009. "Cross-section dependence in nonstationary panel models: a novel estimator," MPRA Paper 17692, University Library of Munich, Germany.
    53. del Barrio-Castro, Tomas & Lopez-Bazo, Enrique & Serrano-Domingo, Guadalupe, 2002. "New evidence on international R&D spillovers, human capital and productivity in the OECD," Economics Letters, Elsevier, vol. 77(1), pages 41-45, September.
    54. Eunsuk Hong & Laixiang Sun, 2011. "Foreign Direct Investment and Total Factor Productivity in China: A Spatial Dynamic Panel Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73, pages 771-791, December.
    55. Georges Bresson & Cheng Hsiao, 2011. "A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 501-529, December.
    56. Badi H. Baltagi & Georges Bresson & Alain Pirotte, 2004. "Tobin q: Forecast performance for hierarchical Bayes, shrinkage, heterogeneous and homogeneous panel data estimators," Empirical Economics, Springer, vol. 29(1), pages 107-113, January.
    57. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    58. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross‐Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    59. Dirk Frantzen, 2000. "R&D, Human Capital and International Technology Spillovers: A Cross‐country Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(1), pages 57-75, March.
    60. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    61. repec:hal:journl:peer-00796743 is not listed on IDEAS
    62. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    63. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    64. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    65. Fleissig, Adrian R. & Strauss, Jack, 1999. "Is OECD real per capita GDP trend or difference stationary? Evidence from panel unit root tests," Journal of Macroeconomics, Elsevier, vol. 21(4), pages 673-689.
    66. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    67. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    68. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cern Ertur & Antonio Musolesi, 2012. "Spatial autoregressive spillovers vs unobserved common factors models. A panel data analysis of international technology diffusion," INRA UMR CESAER Working Papers 2012/9, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.
    2. Cem Ertur & Antonio Musolesi, 2014. "Dépendance individuelle forte et faible : une analyse en données de panel de la diffusion internationale de la technologie," Working Papers halshs-01015208, HAL.
    3. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    4. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: An estimation strategy based on forecasting-driven model selection," SEEDS Working Papers 0621, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2021.
    5. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: an estimation strategy based on forecasting-driven model selection," Working Papers hal-03224910, HAL.
    6. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    7. Markus Eberhardt & Francis Teal, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," CSAE Working Paper Series 2008-12, Centre for the Study of African Economies, University of Oxford.
    8. Diego-Ivan Ruge-Leiva, 2014. "International R&D spillovers and unobserved common shocks," Working Papers 08/14, Instituto Universitario de Análisis Económico y Social.
    9. Tim Buyse & Freddy Heylen & Ruben Schoonackers, 2015. "On The Role Of Public Policies And Wage Formation For Private Investment In R&D: A Long-Run Panel Analysis," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/911, Ghent University, Faculty of Economics and Business Administration.
    10. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    11. R. Golinelli & I. Mammi & A. Musolesi, 2018. "Parameter heterogeneity, persistence and cross-sectional dependence: new insights on fiscal policy reaction functions for the Euro area," Working Papers wp1120, Dipartimento Scienze Economiche, Universita' di Bologna.
    12. Francis Teal & Markus Eberhardt, 2010. "Productivity Analysis in Global Manufacturing Production," Economics Series Working Papers 515, University of Oxford, Department of Economics.
    13. Markus Eberhardt & Francis Teal, 2010. "Aggregation versus Heterogeneity in Cross-Country Growth Empirics," CSAE Working Paper Series 2010-32, Centre for the Study of African Economies, University of Oxford.
    14. Aninday Banerjee & Markus Eberhardt & J James Reade, 2010. "Panel Estimation for Worriers," Discussion Papers 10-33, Department of Economics, University of Birmingham.
    15. Tolga Omay & Mübariz Hasanov & Yongcheol Shin, 2018. "Testing for Unit Roots in Dynamic Panels with Smooth Breaks and Cross-Sectionally Dependent Errors," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 167-193, June.
    16. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.
    17. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, 02.

    More about this item

    Keywords

    panel data; cross-sectional correlation; spatial models; factor models; unit root; international technology diffusion; geography.;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • F0 - International Economics - - General
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:srt:wpaper:1915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alessandro Palma (email available below). General contact details of provider: http://www.sustainability-seeds.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.