IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v32y2017i3p477-503.html
   My bibliography  Save this article

Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion

Author

Listed:
  • Cem Ertur
  • Antonio Musolesi

Abstract

This paper provides an econometric examination of geographic R&D spillovers among countries by focusing on the issue of cross-sectional dependence. By applying several unit root tests, we first show that when the number of lags of the autoregressive component of augmented Dickey Fuller test-type specifications or the number of common factors is estimated in a model selection framework, the variables (total factor productivity and R&D capital stocks) appear to be stationary. Then, we estimate the model using two complementary approaches, focusing on spatial autoregressive errors and unobserved common correlated factors. These approaches account for different types of cross-sectional dependence and are related to the concepts of weak and strong cross-sectional dependence recently developed in the literature.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
  • Handle: RePEc:wly:japmet:v:32:y:2017:i:3:p:477-503
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    2. Chihwa Kao & Min‐Hsien Chiang & Bangtian Chen, 1999. "International R&D Spillovers: An Application of Estimation and Inference in Panel Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 691-709, November.
    3. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    4. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    5. Enrico Spolaore & Romain Wacziarg, 2009. "The Diffusion of Development," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(2), pages 469-529.
    6. Paul Krugman & Anthony J. Venables, 1995. "Globalization and the Inequality of Nations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(4), pages 857-880.
    7. Moon, H.R.Hyungsik Roger & Perron, Benoit, 2004. "Testing for a unit root in panels with dynamic factors," Journal of Econometrics, Elsevier, vol. 122(1), pages 81-126, September.
    8. Georges Bresson & Badi H. Baltagi & Alain Pirotte, 2007. "Panel unit root tests and spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 339-360.
    9. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    10. Julie Le Gallo & Catherine Baumont & Sandy Dall'erba & Cem Ertur, 2005. "On the property of diffusion in the spatial error model," Applied Economics Letters, Taylor & Francis Journals, vol. 12(9), pages 533-536.
    11. Mastromarco Camilla & Laura Serlenga & Yongcheol Shin, 2013. "Globalisation and technological convergence in the EU," Journal of Productivity Analysis, Springer, vol. 40(1), pages 15-29, August.
    12. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    13. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    14. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    15. Barro, Robert J & Lee, Jong-Wha, 2001. "International Data on Educational Attainment: Updates and Implications," Oxford Economic Papers, Oxford University Press, vol. 53(3), pages 541-563, July.
    16. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    17. Badi H. Baltagi & Georges Bresson & Alain Pirotte, 2004. "Tobin q: Forecast performance for hierarchical Bayes, shrinkage, heterogeneous and homogeneous panel data estimators," Empirical Economics, Springer, vol. 29(1), pages 107-113, January.
    18. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    19. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    20. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    21. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    22. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    23. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    24. Georges Bresson & Cheng Hsiao, 2011. "A functional connectivity approach for modeling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 501-529, December.
    25. Francis Teal & Markus Eberhardt, 2010. "Productivity Analysis in Global Manufacturing Production," Economics Series Working Papers 515, University of Oxford, Department of Economics.
    26. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    27. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    28. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    29. Eberhardt, Markus & Teal, Francis, 2008. "Modeling technology and technological change in manufacturing: how do countries differ?," MPRA Paper 10690, University Library of Munich, Germany.
    30. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    31. Engelbrecht, Hans-Jurgen, 1997. "International R&D spillovers, human capital and productivity in OECD economies: An empirical investigation," European Economic Review, Elsevier, vol. 41(8), pages 1479-1488, August.
    32. Luciano Gutierrez, 2006. "Panel Unit‐root Tests for Cross‐sectionally Correlated Panels: A Monte Carlo Comparison," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(4), pages 519-540, August.
    33. Steve Bond & Asli Leblebicioglu & Fabio Schiantarelli, 2010. "Capital accumulation and growth: a new look at the empirical evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(7), pages 1073-1099, November/.
    34. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    35. Psacharopoulos, George, 1994. "Returns to investment in education: A global update," World Development, Elsevier, vol. 22(9), pages 1325-1343, September.
    36. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    37. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 83-116.
    38. Eunsuk Hong & Laixiang Sun, 2011. "Foreign Direct Investment and Total Factor Productivity in China: A Spatial Dynamic Panel Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73, pages 771-791, December.
    39. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    40. Massimiliano Mazzanti & Antonio Musolesi, 2013. "The heterogeneity of carbon Kuznets curves for advanced countries: comparing homogeneous, heterogeneous and shrinkage/Bayesian estimators," Applied Economics, Taylor & Francis Journals, vol. 45(27), pages 3827-3842, September.
    41. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    42. Dirk Frantzen, 2000. "R&D, Human Capital and International Technology Spillovers: A Cross‐country Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(1), pages 57-75, March.
    43. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    44. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    45. Sarafidis, Vasilis, 2009. "GMM Estimation of Short Dynamic Panel Data Models With Error Cross-Sectional Dependence," MPRA Paper 25176, University Library of Munich, Germany.
    46. Musolesi, Antonio, 2007. "Basic stocks of knowledge and productivity: Further evidence from the hierarchical Bayes estimator," Economics Letters, Elsevier, vol. 95(1), pages 54-59, April.
    47. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    48. Coe, David T. & Helpman, Elhanan & Hoffmaister, Alexander W., 2009. "International R&D spillovers and institutions," European Economic Review, Elsevier, vol. 53(7), pages 723-741, October.
    49. Hsiao,Cheng & Pesaran,M. Hashem & Lahiri,Kajal & Lee,Lung Fei (ed.), 1999. "Analysis of Panels and Limited Dependent Variable Models," Cambridge Books, Cambridge University Press, number 9780521631693, September.
    50. Lichtenberg, Frank R. & Pottelsberghe de la Potterie, Bruno v., 1998. "International R&D spillovers: A comment," European Economic Review, Elsevier, vol. 42(8), pages 1483-1491, September.
    51. Christophe Hurlin, 2010. "What would Nelson and Plosser find had they used panel unit root tests?," Applied Economics, Taylor & Francis Journals, vol. 42(12), pages 1515-1531.
    52. Corbae,Dean & Durlauf,Steven N. & Hansen,Bruce E. (ed.), 2006. "Econometric Theory and Practice," Cambridge Books, Cambridge University Press, number 9780521807234, September.
    53. repec:bla:obuest:v:61:y:1999:i:0:p:691-709 is not listed on IDEAS
    54. Benoit Perron & Hyungsik Roger Moon, 2007. "An empirical analysis of nonstationarity in a panel of interest rates with factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 383-400.
    55. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    56. del Barrio-Castro, Tomas & Lopez-Bazo, Enrique & Serrano-Domingo, Guadalupe, 2002. "New evidence on international R&D spillovers, human capital and productivity in the OECD," Economics Letters, Elsevier, vol. 77(1), pages 41-45, September.
    57. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    58. Fleissig, Adrian R. & Strauss, Jack, 1999. "Is OECD real per capita GDP trend or difference stationary? Evidence from panel unit root tests," Journal of Macroeconomics, Elsevier, vol. 21(4), pages 673-689.
    59. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    60. Bruno Van Pottelsberghe De La Potterie & Frank Lichtenberg, 2001. "Does Foreign Direct Investment Transfer Technology Across Borders?," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 490-497, August.
    61. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2002. "Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity and natural-gas consumption," Economics Letters, Elsevier, vol. 76(3), pages 375-382, August.
    62. Bierens, Herman J., 1997. "Testing the unit root with drift hypothesis against nonlinear trend stationarity, with an application to the US price level and interest rate," Journal of Econometrics, Elsevier, vol. 81(1), pages 29-64, November.
    63. repec:hhs:iuiwop:430 is not listed on IDEAS
    64. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    65. Eberhardt, Markus & Bond, Stephen, 2009. "Cross-section dependence in nonstationary panel models: a novel estimator," MPRA Paper 17692, University Library of Munich, Germany.
    66. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross‐Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    67. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    68. repec:hal:journl:peer-00796743 is not listed on IDEAS
    69. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cern Ertur & Antonio Musolesi, 2012. "Spatial autoregressive spillovers vs unobserved common factors models. A panel data analysis of international technology diffusion," INRA UMR CESAER Working Papers 2012/9, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.
    2. Cem Ertur & Antonio Musolesi, 2014. "Dépendance individuelle forte et faible : une analyse en données de panel de la diffusion internationale de la technologie," Working Papers halshs-01015208, HAL.
    3. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    4. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: An estimation strategy based on forecasting-driven model selection," SEEDS Working Papers 0621, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2021.
    5. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: an estimation strategy based on forecasting-driven model selection," Working Papers hal-03224910, HAL.
    6. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    7. Markus Eberhardt & Francis Teal, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," CSAE Working Paper Series 2008-12, Centre for the Study of African Economies, University of Oxford.
    8. Diego-Ivan Ruge-Leiva, 2014. "International R&D spillovers and unobserved common shocks," Working Papers 08/14, Instituto Universitario de Análisis Económico y Social.
    9. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    10. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, 02.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • F0 - International Economics - - General
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:32:y:2017:i:3:p:477-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.