Credit scoring with boosted decision trees
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
- Reichert, Alan K & Cho, Chien-Ching & Wagner, George M, 1983. "An Examination of the Conceptual Issues Involved in Developing Credit-scoring Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 101-114, April.
- Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
- Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marco Locurcio & Francesco Tajani & Pierluigi Morano & Debora Anelli & Benedetto Manganelli, 2021. "Credit Risk Management of Property Investments through Multi-Criteria Indicators," Risks, MDPI, vol. 9(6), pages 1-23, June.
- Zhang, Zhiwang & Gao, Guangxia & Shi, Yong, 2014. "Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors," European Journal of Operational Research, Elsevier, vol. 237(1), pages 335-348.
- Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
- Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- João A. Bastos, 2022. "Predicting Credit Scores with Boosted Decision Trees," Forecasting, MDPI, vol. 4(4), pages 1-11, November.
- Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.
- Ying Zhou & Xia Lin & Guotai Chi & Peng Jin & Mengtong Li, 2024. "EWT‐SMOTE to improve default prediction performance in imbalanced data: Analysis of Chinese data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 615-643, April.
- Lu Gao & Kanshukan Rajaratnam & Peter Beling, 2016. "Loan origination decisions using a multinomial scorecard," Annals of Operations Research, Springer, vol. 243(1), pages 199-210, August.
- Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Documents de travail du Centre d'Economie de la Sorbonne 16026, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01314553, HAL.
- Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
- Wolfgang K. Härdle & Rouslan A. Moro & Dorothea Schäfer, 2004. "Rating Companies with Support Vector Machines," Discussion Papers of DIW Berlin 416, DIW Berlin, German Institute for Economic Research.
- Li Gan & Roberto Mosquera, 2008. "An Empirical Study of the Credit Market with Unobserved Consumer Typers," NBER Working Papers 13873, National Bureau of Economic Research, Inc.
- Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
- Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
- Andrew R. Sanderford & George A. Overstreet & Peter A. Beling & Kanshukan Rajaratnam, 2015. "Energy-efficient homes and mortgage risk: crossing the chasm at last?," Environment Systems and Decisions, Springer, vol. 35(1), pages 157-168, March.
- Westgaard, Sjur & van der Wijst, Nico, 2001. "Default probabilities in a corporate bank portfolio: A logistic model approach," European Journal of Operational Research, Elsevier, vol. 135(2), pages 338-349, December.
- Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
- LaDue, Eddy L. & Miller, Lynn H. & Kwiatkowski, Joseph H., 1990. "Investment Behavior And Energy Conservation," Northeastern Journal of Agricultural and Resource Economics, Northeastern Agricultural and Resource Economics Association, vol. 19(2), pages 1-10, October.
- Barbara CAVALLETTI & Corrado LAGAZIO & Daniela VANDONE, 2008. "Il credito al consumo in Italia: benessere economico o fragilita’ finanziaria?," Departmental Working Papers 2008-24, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
- Pablo de Llano Monelos & Manuel RodrÃguez López & Carlos Piñeiro Sánchez, 2013. "Bankruptcy Prediction Models in Galician companies. Application of Parametric Methodologies and Artificial Intelligence," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 117-136.
More about this item
Keywords
Credit scoring; Boosting; Decision tree; neural network; support vector machine;All these keywords.
JEL classification:
- C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CFN-2008-04-15 (Corporate Finance)
- NEP-CMP-2008-04-15 (Computational Economics)
- NEP-RMG-2008-04-15 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:8034. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.