Predicting credit card delinquencies: An application of deep neural networks
Author
Abstract
Suggested Citation
DOI: 10.1002/isaf.1437
Download full text from publisher
References listed on IDEAS
- Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
- Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016.
"Risk and risk management in the credit card industry,"
Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
- Florentin Butaru & QingQing Chen & Brian Clark & Sanmay Das & Andrew W. Lo & Akhtar Siddique, 2015. "Risk and Risk Management in the Credit Card Industry," NBER Working Papers 21305, National Bureau of Economic Research, Inc.
- Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
- Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
- Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
- Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
- Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
- Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
- Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
- Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Cheng Few Lee, 2020. "Financial econometrics, mathematics, statistics, and financial technology: an overall view," Review of Quantitative Finance and Accounting, Springer, vol. 54(4), pages 1529-1578, May.
- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brad S. Trinkle & Amelia A. Baldwin, 2016. "Research Opportunities for Neural Networks: The Case for Credit," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 240-254, July.
- Lobna Abid & Afif Masmoudi & Sonia Zouari-Ghorbel, 2018. "The Consumer Loan’s Payment Default Predictive Model: an Application of the Logistic Regression and the Discriminant Analysis in a Tunisian Commercial Bank," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 948-962, September.
- Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Haskamp, Ulrich, 2017. "Improving the forecasts of European regional banks' profitability with machine learning algorithms," Ruhr Economic Papers 705, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
- Ying Zhou & Xia Lin & Guotai Chi & Peng Jin & Mengtong Li, 2024. "EWT‐SMOTE to improve default prediction performance in imbalanced data: Analysis of Chinese data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 615-643, April.
- Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
- Krivorotov, George, 2023. "Machine learning-based profit modeling for credit card underwriting - implications for credit risk," Journal of Banking & Finance, Elsevier, vol. 149(C).
- Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
- Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
- Brad S. Trinkle & Amelia A. Baldwin, 2007. "Interpretable credit model development via artificial neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 123-147, July.
- L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
- Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
- Fraisse, Henri & Laporte, Matthias, 2022. "Return on investment on artificial intelligence: The case of bank capital requirement," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Aneta Dzik-Walczak & Mateusz Heba, 2019. "A comparison of credit scoring techniques in Peer-to-Peer lending," Working Papers 2019-16, Faculty of Economic Sciences, University of Warsaw.
- K Rajaratnam & P Beling & G Overstreet, 2010. "Scoring decisions in the context of economic uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 421-429, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:25:y:2018:i:4:p:174-189. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.