Credit Risk Management of Property Investments through Multi-Criteria Indicators
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jan-Henning Trustorff & Paul Konrad & Jens Leker, 2011. "Credit risk prediction using support vector machines," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 565-581, May.
- Zhang, Zhiwang & Gao, Guangxia & Shi, Yong, 2014. "Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors," European Journal of Operational Research, Elsevier, vol. 237(1), pages 335-348.
- JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, July-Dece.
- Abbas Mardani & Edmundas Kazimieras Zavadskas & Kannan Govindan & Aslan Amat Senin & Ahmad Jusoh, 2016. "VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications," Sustainability, MDPI, vol. 8(1), pages 1-38, January.
- Francesco Tajani & Pierluigi Morano & Maria Paz Saez-Perez & Felicia Di Liddo & Marco Locurcio, 2019. "Multivariate Dynamic Analysis and Forecasting Models of Future Property Bubbles: Empirical Applications to the Housing Markets of Spanish Metropolitan Cities," Sustainability, MDPI, vol. 11(13), pages 1-21, June.
- Doumpos, Michael & Zopounidis, Constantin, 2004. "A multicriteria classification approach based on pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 158(2), pages 378-389, October.
- Foglia, Matteo & Angelini, Eliana, 2020. "From me to you: Measuring connectedness between Eurozone financial institutions," Research in International Business and Finance, Elsevier, vol. 54(C).
- Antonio Dell'Atti & Mariantonietta Intonti & Antonia Patrizia Iannuzzi, 2013. "The effectiveness of remuneration committees in European banks," Journal of Financial Regulation and Compliance, Emerald Group Publishing Limited, vol. 21(4), pages 373-396, November.
- Bastos, Joao, 2007. "Credit scoring with boosted decision trees," MPRA Paper 8034, University Library of Munich, Germany.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Wei Gu & Meheli Basu & Zhang Chao & Lirong Wei, 2017. "A Unified Framework for Credit Evaluation for Internet Finance Companies: Multi-Criteria Analysis Through AHP and DEA," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 597-624, May.
- Capotorti, Andrea & Barbanera, Eva, 2012. "Credit scoring analysis using a fuzzy probabilistic rough set model," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 981-994.
- Pierluigi Morano & Paolo Rosato & Francesco Tajani & Benedetto Manganelli & Felicia Di Liddo, 2019. "Contextualized Property Market Models vs. Generalized Mass Appraisals: An Innovative Approach," Sustainability, MDPI, vol. 11(18), pages 1-28, September.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Mohammad Reza Hassanzadeh & Changiz Valmohammadi, 2021. "Evaluation and ranking of the banks and financial institutes using fuzzy AHP and TOPSIS techniques," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 40(3), pages 297-317.
- Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
- Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
- David Pla-Santamaria & Mila Bravo & Javier Reig-Mullor & Francisco Salas-Molina, 2021. "A multicriteria approach to manage credit risk under strict uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 494-523, July.
- Dragisa Stanujkic & Edmundas Kazimieras Zavadskas & Darjan Karabasevic & Zenonas Turskis & Violeta Keršulienė, 2017. "New group decision-making ARCAS approach based on the integration of the SWARA and the ARAS methods adapted for negotiations," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(4), pages 599-618, July.
- Nana Chai & Bi Wu & Weiwei Yang & Baofeng Shi, 2019. "A Multicriteria Approach for Modeling Small Enterprise Credit Rating: Evidence from China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(11), pages 2523-2543, September.
- Libby, R, 1975. "Accounting Ratios And Prediction Of Failure - Some Behavioral Evidence," Journal of Accounting Research, Wiley Blackwell, vol. 13(1), pages 150-161.
- Chia-Chen Yang & Shang-Ling Ou & Li-Chang Hsu, 2019. "A Hybrid Multi-Criteria Decision-Making Model for Evaluating Companies’ Green Credit Rating," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
- Alireza Alinezhad & Javad Khalili, 2019. "New Methods and Applications in Multiple Attribute Decision Making (MADM)," International Series in Operations Research and Management Science, Springer, number 978-3-030-15009-9, July-Dece.
- Beverly Hirtle & Mark E. Levonian & Marc R. Saidenberg & Stefan Walter & David M. Wright, 2001. "Using credit risk models for regulatory capital: issues and options," Economic Policy Review, Federal Reserve Bank of New York, issue Mar, pages 19-36.
- Matteo Foglia & Alessandra Ortolano & Elisa Di Febo & Eliana Angelini, 2020. "Bad or good neighbours: a spatial financial contagion study," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 37(4), pages 753-776, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marco Locurcio & Francesco Tajani & Debora Anelli, 2023. "Sustainable Urban Planning Models for New Smart Cities and Effective Management of Land Take Dynamics," Land, MDPI, vol. 12(3), pages 1-5, March.
- Sergio Luis Náñez Alonso & Javier Jorge-Vazquez & Miguel Ángel Echarte Fernández & Konrad Kolegowicz & Wojciech Szymla, 2022. "Financial Exclusion in Rural and Urban Contexts in Poland: A Threat to Achieving SDG Eight?," Land, MDPI, vol. 11(4), pages 1-21, April.
- Nartey Menzo, Benjamin Prince & Mogre, Diana & Asuamah Yeboah, Samuel, 2024. "Beyond Income: The Complexities of Credit Risk in Developing Countries," MPRA Paper 122364, University Library of Munich, Germany, revised 20 Sep 2024.
- Monzur Hossain & Naoyuki Yoshino & Kenmei Tsubota, 2023. "Sustainable Financing Strategies for the SMEs: Two Alternative Models," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
- Michael C. S. Wong & Ho Ming Ho, 2023. "A Framework for Integrating Extreme Weather Risk, Probability of Default, and Loss Given Default for Residential Mortgage Loans," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Baofeng & Chi, Guotai & Li, Weiping, 2020. "Exploring the mismatch between credit ratings and loss-given-default: A credit risk approach," Economic Modelling, Elsevier, vol. 85(C), pages 420-428.
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Martin Kukuk & Michael Rönnberg, 2013. "Corporate credit default models: a mixed logit approach," Review of Quantitative Finance and Accounting, Springer, vol. 40(3), pages 467-483, April.
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
- Ao Yu & Zhuoqiang Jia & Weike Zhang & Ke Deng & Francisco Herrera, 2020. "A Dynamic Credit Index System for TSMEs in China Using the Delphi and Analytic Hierarchy Process (AHP) Methods," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
- Silvia Angilella & Maria Rosaria Pappalardo, 2021. "Assessment of a failure prediction model in the energy sector: a multicriteria discrimination approach with Promethee based classification," Papers 2102.07656, arXiv.org.
- Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
- Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.
- Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
- Ekaterina Tzvetanova, 2019. "Adaptation of the Altman’s Corporate Insolvency Prediction Model – The Bulgarian Case," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 125-142.
- Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
- Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020.
"Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds,"
LEO Working Papers / DR LEO
2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Elena Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2021. "Machine Learning or Econometrics for Credit Scoring: Let's Get the Best of Both Worlds," Working Papers hal-02507499, HAL.
- Velia Gabriella Cenciarelli & Marco Maria Mattei & Giulio Greco, 2020. "Pressione competitiva e previsione dell?insolvenza," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2020(3), pages 35-58.
- Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
- repec:ers:journl:v:xxiv:y:2021:i:special3:p:719-736 is not listed on IDEAS
- Manuel D. N. T. Oliveira & Fernando A. F. Ferreira & Guillermo O. Pérez-Bustamante Ilander & Marjan S. Jalali, 2017. "Integrating cognitive mapping and MCDA for bankruptcy prediction in small- and medium-sized enterprises," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 985-997, September.
- Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
- José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
- Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.
More about this item
Keywords
NPLs; mortgage loan; risk analysis; MCDA; AHP; PROMETHEE;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:6:p:106-:d:567524. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.