IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/58827.html
   My bibliography  Save this paper

Fine structure of the price-demand relationship in the electricity market: multi-scale correlation analysis

Author

Listed:
  • Afanasyev, Dmitriy
  • Fedorova, Elena
  • Popov, Viktor

Abstract

The price-demand relationship in the electricity market is a complicated phenomenon. In order to thoroughly investigate the peculiarities of this relationship, a multi-scale correlation analysis of electricity price and demand is carried out in this research. Using a modified method of socalled time-dependent intrinsic correlation (TDIC) (Chen et al., 2010), based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) (Torres et al., 2011), and bootstrapping, we investigate the problems of dynamic interconnection between electricity demand and prices over different time scales (i.e. its fine structure). We formulate and test three hypotheses on the type and strength of correlations between them in the short-, medium- and long-runs. In this research we analyze the data from two largest price zones of Russian wholesale electricity market: Europe-Ural and Siberia. These two zones differ from each other by the structures of electricity generation and consumption. It is shown that these two price zones significantly differ in internal price-demand correlation structure over the comparable time scales, and not each of the theoretically formulated hypotheses is true for each of the price zones. This allows us to conclude that the answer to the question whether it is necessary to take into account the influence of demand-side on electricity spot prices over different time scales, is significantly dependent on the structure of electricity generation and consumption on the corresponding market.

Suggested Citation

  • Afanasyev, Dmitriy & Fedorova, Elena & Popov, Viktor, 2014. "Fine structure of the price-demand relationship in the electricity market: multi-scale correlation analysis," MPRA Paper 58827, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:58827
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/58827/1/MPRA_paper_58827.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/66138/1/MPRA_paper_58827.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
    2. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    3. Finn E. Kydland & Edward C. Prescott, 1990. "Business cycles: real facts and a monetary myth," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 14(Spr), pages 3-18.
    4. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    5. Cartea, Álvaro & Villaplana, Pablo, 2008. "Spot price modeling and the valuation of electricity forward contracts: The role of demand and capacity," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2502-2519, December.
    6. De Jong Cyriel, 2006. "The Nature of Power Spikes: A Regime-Switch Approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-28, September.
    7. Weron, Rafal & Przybyłowicz, Beata, 2000. "Hurst analysis of electricity price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 462-468.
    8. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    9. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    10. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    11. Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
    12. Trueck, Stefan & Weron, Rafal & Wolff, Rodney, 2007. "Outlier Treatment and Robust Approaches for Modeling Electricity Spot Prices," MPRA Paper 4711, University Library of Munich, Germany.
    13. Uritskaya, Olga Y. & Serletis, Apostolos, 2008. "Quantifying multiscale inefficiency in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3109-3117, November.
    14. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    15. repec:clg:wpaper:2008-21 is not listed on IDEAS
    16. Oladosu, Gbadebo, 2009. "Identifying the oil price-macroeconomy relationship: An empirical mode decomposition analysis of US data," Energy Policy, Elsevier, vol. 37(12), pages 5417-5426, December.
    17. Crowley Patrick M., 2012. "How Do You Make A Time Series Sing Like a Choir? Extracting Embedded Frequencies from Economic and Financial Time Series using Empirical Mode Decomposition," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(5), pages 1-31, December.
    18. Helyette Geman & V. Nguyen, 2005. "Soybeans Inventory and Forward Curve Dynamics," Post-Print halshs-00144292, HAL.
    19. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    20. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    21. Hélyette Geman & Vu-Nhat Nguyen, 2005. "Soybean Inventory and Forward Curve Dynamics," Management Science, INFORMS, vol. 51(7), pages 1076-1091, July.
    22. repec:dau:papers:123456789/1937 is not listed on IDEAS
    23. Kosater, Peter & Mosler, Karl, 2006. "Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices," Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afanasyev, Dmitriy & Fedorova, Elena, 2015. "The long-term trends on Russian electricity market: comparison of empirical mode and wavelet decompositions," MPRA Paper 62391, University Library of Munich, Germany.
    2. Balagula, Yuri, 2020. "Forecasting daily spot prices in the Russian electricity market with the ARFIMA model," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 89-101.
    3. Lei Jiang & Ling Bai, 2017. "Revisiting the Granger Causality Relationship between Energy Consumption and Economic Growth in China: A Multi-Timescale Decomposition Approach," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    4. Wang, Haoyu & Di, Junpeng & Yang, Zhaojun & Han, Qing, 2020. "Assessment of mutual fund performance based on Ensemble Empirical Mode Decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    5. Dmitriy O. Afanasyev & Elena A. Fedorova & Evgeniy V. Gilenko, 2021. "The fundamental drivers of electricity price: a multi-scale adaptive regression analysis," Empirical Economics, Springer, vol. 60(4), pages 1913-1938, April.
    6. Afanasyev, D. & Fedorova, E., 2018. "External and Internal Determinants on the Electricity Market: A Multi-Scale Adaptive Causal Analysis," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 33-54.
    7. Qunwei Wang & Xingyu Dai & Dequn Zhou, 2020. "Dynamic Correlation and Risk Contagion Between “Black” Futures in China: A Multi-scale Variational Mode Decomposition Approach," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1117-1150, April.
    8. Abdullah, Mohammad & Abakah, Emmanuel Joel Aikins & Wali Ullah, G M & Tiwari, Aviral Kumar & Khan, Isma, 2023. "Tail risk contagion across electricity markets in crisis periods," Energy Economics, Elsevier, vol. 127(PB).
    9. Fang, Guochang & Tian, Lixin & Liu, Menghe & Fu, Min & Sun, Mei, 2018. "How to optimize the development of carbon trading in China—Enlightenment from evolution rules of the EU carbon price," Applied Energy, Elsevier, vol. 211(C), pages 1039-1049.
    10. Qing Peng & Fenghua Wen & Xu Gong, 2021. "Time‐dependent intrinsic correlation analysis of crude oil and the US dollar based on CEEMDAN," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 834-848, January.
    11. Niu, Hongli, 2021. "Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale time-dependent analysis," Energy, Elsevier, vol. 221(C).
    12. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2016. "The long-term trends on the electricity markets: Comparison of empirical mode and wavelet decompositions," Energy Economics, Elsevier, vol. 56(C), pages 432-442.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    3. Dmitriy O. Afanasyev & Elena A. Fedorova & Evgeniy V. Gilenko, 2021. "The fundamental drivers of electricity price: a multi-scale adaptive regression analysis," Empirical Economics, Springer, vol. 60(4), pages 1913-1938, April.
    4. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    5. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    6. Afanasyev, Dmitriy & Fedorova, Elena, 2015. "The long-term trends on Russian electricity market: comparison of empirical mode and wavelet decompositions," MPRA Paper 62391, University Library of Munich, Germany.
    7. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    8. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2016. "The long-term trends on the electricity markets: Comparison of empirical mode and wavelet decompositions," Energy Economics, Elsevier, vol. 56(C), pages 432-442.
    9. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    10. Afanasyev, D. & Fedorova, E., 2018. "External and Internal Determinants on the Electricity Market: A Multi-Scale Adaptive Causal Analysis," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 33-54.
    11. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
    12. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    13. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    14. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    15. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    16. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    17. Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
    18. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    19. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    20. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).

    More about this item

    Keywords

    electricity spot price; electricity demand; price-demand correlation; empirical mode decomposition; time-dependent intrinsic correlation; trend estimation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:58827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.