IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2299-d122514.html
   My bibliography  Save this article

Revisiting the Granger Causality Relationship between Energy Consumption and Economic Growth in China: A Multi-Timescale Decomposition Approach

Author

Listed:
  • Lei Jiang

    (School of Economics, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

  • Ling Bai

    (School of Economics and Management, Nanchang University, Nanchang 330031, China)

Abstract

The past four decades have witnessed rapid growth in the rate of energy consumption in China. A great deal of energy consumption has led to two major issues. One is energy shortages and the other is environmental pollution caused by fossil fuel combustion. Since energy saving plays a substantial role in addressing both issues, it is of vital importance to study the intrinsic characteristics of energy consumption and its relationship with economic growth. The topic of the nexus between energy consumption and economic growth has been hotly debated for years. However, conflicting conclusions have been drawn. In this paper, we provide a novel insight into the characteristics of the growth rate of energy consumption in China from a multi-timescale perspective by means of adaptive time-frequency data analysis; namely, the ensemble empirical mode decomposition method, which is suitable for the analysis of non-linear time series. Decomposition led to four intrinsic mode function (IMF) components and a trend component with different periods. Then, we repeated the same procedure for the growth rate of China’s GDP and obtained four similar IMF components and a trend component. In the second stage, we performed the Granger causality test. The results demonstrated that, in the short run, there was a bidirectional causality relationship between economic growth and energy consumption, and in the long run a unidirectional relationship running from economic growth to energy consumption.

Suggested Citation

  • Lei Jiang & Ling Bai, 2017. "Revisiting the Granger Causality Relationship between Energy Consumption and Economic Growth in China: A Multi-Timescale Decomposition Approach," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2299-:d:122514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herrerias, M.J. & Joyeux, R. & Girardin, E., 2013. "Short- and long-run causality between energy consumption and economic growth: Evidence across regions in China," Applied Energy, Elsevier, vol. 112(C), pages 1483-1492.
    2. Dergiades, Theologos & Tsoulfidis, Lefteris, 2008. "Estimating residential demand for electricity in the United States, 1965-2006," Energy Economics, Elsevier, vol. 30(5), pages 2722-2730, September.
    3. Crompton, Paul & Wu, Yanrui, 2005. "Energy consumption in China: past trends and future directions," Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
    4. Cattaneo, Cristina & Manera, Matteo & Scarpa, Elisa, 2011. "Industrial coal demand in China: A provincial analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 12-35, January.
    5. Stephan B. Bruns, Christian Gross and David I. Stern, 2014. "Is There Really Granger Causality Between Energy Use and Output?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    7. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    8. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    9. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    10. Yu, Lean & Li, Jingjing & Tang, Ling & Wang, Shuai, 2015. "Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach," Energy Economics, Elsevier, vol. 51(C), pages 300-311.
    11. Shao, Zhen & Gao, Fei & Yang, Shan-Lin & Yu, Ben-gong, 2015. "A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: Hidden characteristic extraction and probability density prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 876-889.
    12. Song, Malin & Wang, Shuhong & Yu, Huayin & Yang, Li & Wu, Jie, 2011. "To reduce energy consumption and to maintain rapid economic growth: Analysis of the condition in China based on expended IPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5129-5134.
    13. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    14. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
    15. Bozoklu, Seref & Yilanci, Veli, 2013. "Energy consumption and economic growth for selected OECD countries: Further evidence from the Granger causality test in the frequency domain," Energy Policy, Elsevier, vol. 63(C), pages 877-881.
    16. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    17. Lei Jiang & Henk Folmer & Minhe Ji & Jianjun Tang, 2017. "Energy efficiency in the Chinese provinces: a fixed effects stochastic frontier spatial Durbin error panel analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(2), pages 301-319, March.
    18. Wang, Qiang, 2014. "Effects of urbanisation on energy consumption in China," Energy Policy, Elsevier, vol. 65(C), pages 332-339.
    19. Mutascu, Mihai, 2016. "A bootstrap panel Granger causality analysis of energy consumption and economic growth in the G7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 166-171.
    20. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    21. Jiang, Zhujun & Lin, Boqiang, 2012. "China's energy demand and its characteristics in the industrialization and urbanization process," Energy Policy, Elsevier, vol. 49(C), pages 608-615.
    22. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    23. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    24. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    25. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    26. Wolde-Rufael, Yemane, 2014. "Electricity consumption and economic growth in transition countries: A revisit using bootstrap panel Granger causality analysis," Energy Economics, Elsevier, vol. 44(C), pages 325-330.
    27. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    28. Wang, Yuan & Wang, Yichen & Zhou, Jing & Zhu, Xiaodong & Lu, Genfa, 2011. "Energy consumption and economic growth in China: A multivariate causality test," Energy Policy, Elsevier, vol. 39(7), pages 4399-4406, July.
    29. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    30. Zhang, Haiyan & Lahr, Michael L., 2014. "China's energy consumption change from 1987 to 2007: A multi-regional structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 682-693.
    31. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
    32. Sari, Ramazan & Ewing, Bradley T. & Soytas, Ugur, 2008. "The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach," Energy Economics, Elsevier, vol. 30(5), pages 2302-2313, September.
    33. Zhang, Chuanguo & Xu, Jiao, 2012. "Retesting the causality between energy consumption and GDP in China: Evidence from sectoral and regional analyses using dynamic panel data," Energy Economics, Elsevier, vol. 34(6), pages 1782-1789.
    34. Soytas, Ugur & Sari, Ramazan, 2007. "The relationship between energy and production: Evidence from Turkish manufacturing industry," Energy Economics, Elsevier, vol. 29(6), pages 1151-1165, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Muhammad Tariq Iqbal & Yaseen, Muhammad Rizwan & Ali, Qamar, 2019. "Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis," Energy Economics, Elsevier, vol. 83(C), pages 293-310.
    2. Mao, Xuegeng & Yang, Albert C. & Peng, Chung-Kang & Shang, Pengjian, 2020. "Analysis of economic growth fluctuations based on EEMD and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyh-Wei Chen & Zixiong Xie & Ying Liao, 2018. "Energy consumption promotes economic growth or economic growth causes energy use in China? A panel data analysis," Empirical Economics, Springer, vol. 55(3), pages 1019-1043, November.
    2. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    3. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    4. Fang, Zheng & Chen, Yang, 2017. "Human capital, energy, and economic development – Evidence from Chinese provincial data," RIEI Working Papers 2017-03, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
    5. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    6. Hao, Yu & Wang, Ling'ou & Zhu, Lingyun & Ye, Minjie, 2018. "The dynamic relationship between energy consumption, investment and economic growth in China's rural area: New evidence based on provincial panel data," Energy, Elsevier, vol. 154(C), pages 374-382.
    7. Paresh Narayan & Russell Smyth, 2014. "Applied Econometrics and a Decade of Energy Economics Research," Monash Economics Working Papers 21-14, Monash University, Department of Economics.
    8. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    9. Mario Gómez & Aitor Ciarreta & Ainhoa Zarraga, 2018. "Linear and Nonlinear Causality between Energy Consumption and Economic Growth: The Case of Mexico 1965–2014," Energies, MDPI, vol. 11(4), pages 1-15, March.
    10. Lei Jiang & Henk Folmer & Minhe Ji & Jianjun Tang, 2017. "Energy efficiency in the Chinese provinces: a fixed effects stochastic frontier spatial Durbin error panel analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(2), pages 301-319, March.
    11. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    12. Ruixiaoxiao Zhang & Geoffrey QP Shen & Meng Ni & Johnny Wong, 2020. "The relationship between energy consumption and gross domestic product in Hong Kong (1992–2015): Evidence from sectoral analysis and implications on future energy policy," Energy & Environment, , vol. 31(2), pages 215-236, March.
    13. Wang, Zhibao & Zhao, Nana & Wei, Wendong & Zhang, Qianwen, 2021. "A differentiated energy Kuznets curve: Evidence from mainland China," Energy, Elsevier, vol. 214(C).
    14. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    15. Sheilla Nyasha & Yvonne Gwenhure & Nicholas M Odhiambo, 2018. "Energy consumption and economic growth in Ethiopia: A dynamic causal linkage," Energy & Environment, , vol. 29(8), pages 1393-1412, December.
    16. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    17. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    18. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    19. Shahiduzzaman, Md. & Alam, Khorshed, 2014. "The long-run impact of Information and Communication Technology on economic output: The case of Australia," Telecommunications Policy, Elsevier, vol. 38(7), pages 623-633.
    20. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2299-:d:122514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.