Forecasting daily spot prices in the Russian electricity market with the ARFIMA model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015.
"Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis,"
Energy Economics, Elsevier, vol. 51(C), pages 215-226.
- Afanasyev, Dmitriy & Fedorova, Elena & Popov, Viktor, 2014. "Fine structure of the price-demand relationship in the electricity market: multi-scale correlation analysis," MPRA Paper 58827, University Library of Munich, Germany.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- Gianfreda, Angelica & Grossi, Luigi, 2012.
"Forecasting Italian electricity zonal prices with exogenous variables,"
Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
- Angelica Gianfreda & Luigi Grossi, 2011. "Forecasting Italian Electricity Zonal Prices with Exogenous Variables," Working Papers 01/2011, University of Verona, Department of Economics.
- Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007.
"Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices,"
Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
- Siem Jan Koopman & Marius Ooms & M. Angeles Carnero, 2005. "Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 05-091/4, Tinbergen Institute.
- Haldrup, Niels & Nielsen, Morten Orregaard, 2006.
"A regime switching long memory model for electricity prices,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
- Niels Haldrup & Morten O. Nielsen, 2004. "A Regime Switching Long Memory Model for Electricity Prices," Economics Working Papers 2004-2, Department of Economics and Business Economics, Aarhus University.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Yuri Balagula, 2016. "Fractal Characterization of Long Memory in Electricity Prices," EUSP Department of Economics Working Paper Series 2016/03, European University at St. Petersburg, Department of Economics.
- Haldrup Niels & Nielsen Morten Ø., 2006.
"Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
- Haldrup; Niels & Morten Oerregaard Nielsen, 2005. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Economics Working Papers 2005-18, Department of Economics and Business Economics, Aarhus University.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Garafutdinov, Robert, 2021. "Influence of some ARFIMA model parameters on the accuracy of financial time series forecasting," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 62, pages 85-100.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
- Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
- João Pedro Pereira & Vasco Pesquita & Paulo M. M. Rodrigues & António Rua, 2019.
"Market integration and the persistence of electricity prices,"
Empirical Economics, Springer, vol. 57(5), pages 1495-1514, November.
- António Rua & Paulo M.M. Rodrigues & João Pedro Pereira, 2016. "Market integration and the persistence of electricity prices," Working Papers w201609, Banco de Portugal, Economics and Research Department.
- Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016.
"Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads,"
Energy Economics, Elsevier, vol. 60(C), pages 79-96.
- Yunus Emre Ergemen & Niels Haldrup & Carlos Vladimir Rodríguez-Caballero, 2015. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," CREATES Research Papers 2015-58, Department of Economics and Business Economics, Aarhus University.
- Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
- Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
- Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010.
"A vector autoregressive model for electricity prices subject to long memory and regime switching,"
Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
- Niels Haldrup & Frank S. Nielsen & Morten Ørregaard Nielsen, 2007. "A Vector Autoregressive Model for Electricity Prices Subject to Long Memory and Regime Switching," CREATES Research Papers 2007-29, Department of Economics and Business Economics, Aarhus University.
- Frank S. Nielsen & Morten Ø. Nielsen & Niels Haldrup, 2009. "A Vector Autoregressive Model For Electricity Prices Subject To Long Memory And Regime Switching," Working Paper 1211, Economics Department, Queen's University.
- Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
- Lisi, Francesco & Pelagatti, Matteo M., 2018. "Component estimation for electricity market data: Deterministic or stochastic?," Energy Economics, Elsevier, vol. 74(C), pages 13-37.
- Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
- Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
- Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
- Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- Haldrup Niels & Nielsen Morten Ø., 2006.
"Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
- Haldrup; Niels & Morten Oerregaard Nielsen, 2005. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Economics Working Papers 2005-18, Department of Economics and Business Economics, Aarhus University.
- Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
- Yunus Emre Ergemen & Carlos Vladimir Rodríguez-Caballero, 2016. "A Dynamic Multi-Level Factor Model with Long-Range Dependence," CREATES Research Papers 2016-23, Department of Economics and Business Economics, Aarhus University.
- Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
- Smith, Michael Stanley & Shively, Thomas S., 2018.
"Econometric modeling of regional electricity spot prices in the Australian market,"
Energy Economics, Elsevier, vol. 74(C), pages 886-903.
- Michael Stanley Smith & Thomas S. Shively, 2018. "Econometric Modeling of Regional Electricity Spot Prices in the Australian Market," Papers 1804.08218, arXiv.org.
More about this item
Keywords
ARFIMA; time series; long memory; electricity market;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0389. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.