IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v30y2008i6p3109-3117.html
   My bibliography  Save this article

Quantifying multiscale inefficiency in electricity markets

Author

Listed:
  • Uritskaya, Olga Y.
  • Serletis, Apostolos

Abstract

One of the basic features of efficient markets is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices. In this paper, we propose a new approach for measuring deviations from the efficient market state based on an analysis of scale-dependent fractal exponent characterizing correlations at different time scales. The approach is applied to two electricity markets, Alberta and Mid Columbia (Mid-C), as well as to the AECO Alberta natural gas market (for purposes of providing a comparison between storable and non-storable commodities). We show that price fluctuations in all studied markets are not efficient, with electricity prices exhibiting complex multiscale correlated behavior not captured by monofractal methods used in previous studies.

Suggested Citation

  • Uritskaya, Olga Y. & Serletis, Apostolos, 2008. "Quantifying multiscale inefficiency in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3109-3117, November.
  • Handle: RePEc:eee:eneeco:v:30:y:2008:i:6:p:3109-3117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(08)00052-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Apostolos Serletis, 2007. "Quantitative and Empirical Analysis of Energy Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6352, October.
    2. Apostolos Serletis & Ricardo Rangel-Ruiz, 2007. "Testing for Common Features in North American Energy Markets," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 14, pages 172-187, World Scientific Publishing Co. Pte. Ltd..
    3. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    4. Apostolos Serletis & Mattia Bianchi, 2007. "Informational Efficiency and Interchange Transactions in Alberta's Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 121-144.
    5. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2007. "The Hurst exponent in energy futures prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 325-332.
    6. Costa, Rogério L. & Vasconcelos, G.L., 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 231-248.
    7. R. L. Costa & G. L. Vasconcelos, 2003. "Long-range correlations and nonstationarity in the Brazilian stock market," Papers cond-mat/0302342, arXiv.org.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. repec:clg:wpaper:2007-02 is not listed on IDEAS
    10. Moulton, Jonathan S., 2005. "California electricity futures: the NYMEX experience," Energy Economics, Elsevier, vol. 27(1), pages 181-194, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    2. Aurelio F. Bariviera & Luciano Zunino & M. Belen Guercio & Lisana B. Martinez & Osvaldo A. Rosso, 2015. "Efficiency and credit ratings: a permutation-information-theory analysis," Papers 1509.01839, arXiv.org.
    3. João Pedro Pereira & Vasco Pesquita & Paulo M. M. Rodrigues & António Rua, 2019. "Market integration and the persistence of electricity prices," Empirical Economics, Springer, vol. 57(5), pages 1495-1514, November.
    4. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    5. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    6. George P. Papaioannou & Christos Dikaiakos & Akylas C. Stratigakos & Panos C. Papageorgiou & Konstantinos F. Krommydas, 2019. "Testing the Efficiency of Electricity Markets Using a New Composite Measure Based on Nonlinear TS Tools," Energies, MDPI, vol. 12(4), pages 1-30, February.
    7. Dmitriy O. Afanasyev & Elena A. Fedorova & Evgeniy V. Gilenko, 2021. "The fundamental drivers of electricity price: a multi-scale adaptive regression analysis," Empirical Economics, Springer, vol. 60(4), pages 1913-1938, April.
    8. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    9. Wang, Fang & Liao, Gui-ping & Li, Jian-hui & Li, Xiao-chun & Zhou, Tie-jun, 2013. "Multifractal detrended fluctuation analysis for clustering structures of electricity price periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5723-5734.
    10. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    11. Alvarez-Ramirez, J. & Escarela-Perez, R. & Espinosa-Perez, G. & Urrea, R., 2009. "Dynamics of electricity market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2173-2188.
    12. Liu, Li & Wang, Yudong & Wan, Jieqiu, 2010. "Analysis of efficiency for Shenzhen stock market: Evidence from the source of multifractality," International Review of Financial Analysis, Elsevier, vol. 19(4), pages 237-241, September.
    13. Nakajima, Tadahiro, 2013. "Inefficient and opaque price formation in the Japan Electric Power Exchange," Energy Policy, Elsevier, vol. 55(C), pages 329-334.
    14. Afanasyev, D. & Fedorova, E., 2018. "External and Internal Determinants on the Electricity Market: A Multi-Scale Adaptive Causal Analysis," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 33-54.
    15. Olga Y. Uritskaya & Vadim M. Uritsky, 2015. "Predictability of price movements in deregulated electricity markets," Papers 1505.08117, arXiv.org.
    16. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2010. "Auto-correlated behavior of WTI crude oil volatilities: A multiscale perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5759-5768.
    17. Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
    18. Uritskaya, Olga Y. & Uritsky, Vadim M., 2015. "Predictability of price movements in deregulated electricity markets," Energy Economics, Elsevier, vol. 49(C), pages 72-81.
    19. Engelen, Steve & Norouzzadeh, Payam & Dullaert, Wout & Rahmani, Bahareh, 2011. "Multifractal features of spot rates in the Liquid Petroleum Gas shipping market," Energy Economics, Elsevier, vol. 33(1), pages 88-98, January.
    20. Serinaldi, Francesco, 2010. "Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2770-2781.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    2. Olga Y. Uritskaya & Vadim M. Uritsky, 2015. "Predictability of price movements in deregulated electricity markets," Papers 1505.08117, arXiv.org.
    3. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
    4. Uritskaya, Olga Y. & Uritsky, Vadim M., 2015. "Predictability of price movements in deregulated electricity markets," Energy Economics, Elsevier, vol. 49(C), pages 72-81.
    5. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    6. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    7. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    8. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    9. Paulo Ferreira, 2017. "Portuguese and Brazilian stock market integration: a non-linear and detrended approach," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(1), pages 49-63, April.
    10. Luis A. Gil-Alana & Yun Cao, 2011. "Stock market prices in China. Efficiency, mean reversion, long memory volatility and other implicit dynamics," Faculty Working Papers 12/11, School of Economics and Business Administration, University of Navarra.
    11. Abounoori, Esmaiel & Shahrazi, Mahdi & Rasekhi, Saeed, 2012. "An investigation of Forex market efficiency based on detrended fluctuation analysis: A case study for Iran," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3170-3179.
    12. Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
    13. Emmanuel Numapau Gyamfi & Kwabena Kyei & Kwabena Kyei, 2016. "Long - Memory Persistence in African Stock Markets," EuroEconomica, Danubius University of Galati, issue 1(35), pages 83-91, may.
    14. de Oliveira Santos, Maíra & Stosic, Tatijana & Stosic, Borko D., 2012. "Long-term correlations in hourly wind speed records in Pernambuco, Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1546-1552.
    15. Gomes, Luís M. P. & Soares, Vasco J. S. & Gama, Sílvio M. A. & Matos, José A. O., 2018. "Long-term memory in Euronext stock indexes returns: an econophysics approach," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(4), pages 862-881, August.
    16. Growitsch Christian & Nepal Rabindra & Stronzik Marcus, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, De Gruyter, vol. 16(1), pages 87-103, February.
    17. Gebre-Mariam, Yohannes Kebede, 2011. "Testing for unit roots, causality, cointegration, and efficiency: The case of the northwest US natural gas market," Energy, Elsevier, vol. 36(5), pages 3489-3500.
    18. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    20. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:30:y:2008:i:6:p:3109-3117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.