IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/51622.html
   My bibliography  Save this paper

Empirical study to segment firms and capture dynamic business context using LCA

Author

Listed:
  • Chakrabarty, Subhajit
  • Nag, Biswajit

Abstract

The usual methods of segmenting firms are insufficient as they do not consider hidden (unobserved) groupings and do not consider the dynamic market context such as in the apparel industry. An empirical analysis was done using latent class analysis on a cross-section survey of 334 Indian apparel exporting firms. Five latent classes were found by empirical estimation – (i) very old manufacturers in tier 1 cities with large turnover, (ii) manufacturers in tier 2 and 3 cities, (iii) small merchants from the quota-system period dealing in some high fashion, (iv) new firms dealing in some high fashion and women’s garments, (v) new firms not in high fashion. These latent classes are found valid in market context and hence this method can be further explored. An incentive policy structure for the target latent groups in the industry can be better designed from the results.

Suggested Citation

  • Chakrabarty, Subhajit & Nag, Biswajit, 2013. "Empirical study to segment firms and capture dynamic business context using LCA," MPRA Paper 51622, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:51622
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/51622/1/MPRA_paper_51622.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frauke Kreuter & Ting Yan & Roger Tourangeau, 2008. "Good item or bad—can latent class analysis tell?: the utility of latent class analysis for the evaluation of survey questions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(3), pages 723-738, June.
    2. Green, Paul E & Carmone, Frank J & Wachspress, David P, 1976. "Consumer Segmentation via Latent Class Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 3(3), pages 170-174, December.
    3. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    4. Astrid Cullmann, 2012. "Benchmarking and firm heterogeneity: a latent class analysis for German electricity distribution companies," Empirical Economics, Springer, vol. 42(1), pages 147-169, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    3. Adom, Philip Kofi & Adams, Samuel, 2020. "Decomposition of technical efficiency in agricultural production in Africa into transient and persistent technical efficiency under heterogeneous technologies," World Development, Elsevier, vol. 129(C).
    4. Lisa Blaydes, 2023. "Assessing the Labor Conditions of Migrant Domestic Workers in the Arab Gulf States," ILR Review, Cornell University, ILR School, vol. 76(4), pages 724-747, August.
    5. Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H. & Good, Darrel L., 2003. "How To Group Market Participants? Heterogeneity In Hedging Behavior," 2003 Annual meeting, July 27-30, Montreal, Canada 21963, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Jindřich Špička & Zdeňka Náglová, 2022. "Consumer segmentation in the meat market - The case study of Czech Republic," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(2), pages 68-77.
    7. Nicholas T. Davis & Kirby Goidel & Yikai Zhao, 2021. "The Meanings of Democracy among Mass Publics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(3), pages 849-921, February.
    8. Carter, Virginia & Derudder, Ben & Henríquez, Cristián, 2021. "Assessing local governments’ perception of the potential implementation of biophilic urbanism in Chile: A latent class approach," Land Use Policy, Elsevier, vol. 101(C).
    9. Assem Abu Hatab & Padmaja Ravula & Swamikannu Nedumaran & Carl-Johan Lagerkvist, 2022. "Perceptions of the impacts of urban sprawl among urban and peri-urban dwellers of Hyderabad, India: a Latent class clustering analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12787-12812, November.
    10. Lorena Charrier & Paola Berchialla & Paola Dalmasso & Alberto Borraccino & Patrizia Lemma & Franco Cavallo, 2019. "Cigarette Smoking and Multiple Health Risk Behaviors: A Latent Class Regression Model to Identify a Profile of Young Adolescents," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1771-1782, August.
    11. Raphaela Grafiadeli & Heide Glaesmer & Birgit Wagner, 2022. "Loss-Related Characteristics and Symptoms of Depression, Prolonged Grief, and Posttraumatic Stress Following Suicide Bereavement," IJERPH, MDPI, vol. 19(16), pages 1-10, August.
    12. Guangchao Feng, 2014. "Estimating intercoder reliability: a structural equation modeling approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2355-2369, July.
    13. Paolo Brunori & Alain Trannoy & Caterina Francesca Guidi, 2021. "Ranking populations in terms of inequality of health opportunity: A flexible latent type approach," Health Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 358-383, February.
    14. Ozer, Muammer, 2007. "Reducing the demand uncertainties at the fuzzy-front-end of developing new online services," Research Policy, Elsevier, vol. 36(9), pages 1372-1387, November.
    15. Weissinger, Guy & Shelby Rivers, Alannah & Atte, Tita & Diamond, Guy, 2023. "Suicide risk screening in the school environment: Family factors and profiles," Children and Youth Services Review, Elsevier, vol. 145(C).
    16. Ivana Pavlić & Katija Vojvodić & Barbara Puh, 2020. "Consumer Segmentation in Food Retailing in Croatia: A Latent Class Analysis," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 32(SI), pages 9-29.
    17. Elena Narcisa Pogurschi & Carmen Daniela Petcu & Alexandru Eugeniu Mizeranschi & Corina Aurelia Zugravu & Daniela Cirnatu & Ioan Pet & Oana-Mărgărita Ghimpețeanu, 2022. "Knowledge, Attitudes and Practices Regarding Antibiotic Use and Antibiotic Resistance: A Latent Class Analysis of a Romanian Population," IJERPH, MDPI, vol. 19(12), pages 1-16, June.
    18. Lisa Oswald, 2024. "More than news! Mapping the deliberative potential of a political online ecosystem with digital trace data," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.
    19. Veronika Jadczaková, 2013. "Review of segmentation process in consumer markets," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(4), pages 1215-1224.
    20. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.

    More about this item

    Keywords

    segmentation; classification; clusters; policy; garments;
    All these keywords.

    JEL classification:

    • F10 - International Economics - - Trade - - - General
    • F12 - International Economics - - Trade - - - Models of Trade with Imperfect Competition and Scale Economies; Fragmentation
    • F14 - International Economics - - Trade - - - Empirical Studies of Trade

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:51622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.