IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v47y2014i3p1029-1053.html
   My bibliography  Save this article

Nonparametric measures of returns to scale: an application to German water supply

Author

Listed:
  • Michael Zschille

Abstract

The evaluation of market structures and the quantification of returns to scale in network industries usually are of high interest for researchers and policy makers. Regarding the debate on optimal market structures in German potable water supply, we use a cross-sectional sample of 364 German water utilities observed in 2006 to derive a nonparametric measure of scale elasticity for the water industry. The data sample is validated by applying a super-efficiency approach and a statistical testing procedure for outlier detection. Besides using a standard data envelopment analysis approach, a conditional efficiency approach is applied to account for the water utilities’ operating environments. The results indicate non-decreasing returns to scale for the majority of water utilities and constant or non-increasing returns for larger utilities. Optimal firm size is found to be generally larger than the current sample median firm size. Efficiency improvements could be realized by increases in firm sizes and through a consolidation of the industry. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Michael Zschille, 2014. "Nonparametric measures of returns to scale: an application to German water supply," Empirical Economics, Springer, vol. 47(3), pages 1029-1053, November.
  • Handle: RePEc:spr:empeco:v:47:y:2014:i:3:p:1029-1053
    DOI: 10.1007/s00181-013-0775-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-013-0775-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-013-0775-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2008. "Economies of Scale and Scope in Multi-Utilities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 123-144.
    2. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    3. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    4. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    5. Forsund, Finn R & Hjalmarsson, Lennart, 1979. "Generalised Farrell Measures of Efficiency: An Application to Milk Processing in Swedish Dairy Plants," Economic Journal, Royal Economic Society, vol. 89(354), pages 294-315, June.
    6. repec:bla:scandj:v:85:y:1983:i:2:p:181-90 is not listed on IDEAS
    7. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    8. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    9. Saal David S. & Arocena Pablo & Maziotis Alexandros & Triebs Thomas, 2013. "Scale and Scope Economies and the Efficient Vertical and Horizontal Configuration of the Water Industry: A Survey of the Literature," Review of Network Economics, De Gruyter, vol. 12(1), pages 93-129, March.
    10. Christian von Hirschhausen & Astrid Cullmann & Matthias Walter & Michael Zschille, 2009. "Fallende Preise in der Wasserwirtschaft: Hessen auf dem Vormarsch," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(10), pages 150-155.
    11. Badin, Luiza & Daraio, Cinzia & Simar, Léopold, 2010. "Optimal bandwidth selection for conditional efficiency measures: A data-driven approach," European Journal of Operational Research, Elsevier, vol. 201(2), pages 633-640, March.
    12. F R Førsund & L Hjalmarsson, 2004. "Calculating scale elasticity in DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1023-1038, October.
    13. Hanoch, Giora, 1970. "Homotheticity in joint production," Journal of Economic Theory, Elsevier, vol. 2(4), pages 423-426, December.
    14. Walter, Matthias & Cullmann, Astrid & von Hirschhausen, Christian & Wand, Robert & Zschille, Michael, 2009. "Quo vadis efficiency analysis of water distribution? A comparative literature review," Utilities Policy, Elsevier, vol. 17(3-4), pages 225-232, September.
    15. Erbetta, Fabrizio & Rappuoli, Luca, 2008. "Optimal scale in the Italian gas distribution industry using data envelopment analysis," Omega, Elsevier, vol. 36(2), pages 325-336, April.
    16. John C. Panzar & Robert D. Willig, 1977. "Economies of Scale in Multi-Output Production," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 91(3), pages 481-493.
    17. Podinovski, Victor V. & Førsund, Finn R. & Krivonozhko, Vladimir E., 2009. "A simple derivation of scale elasticity in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 197(1), pages 149-153, August.
    18. Cinzia Daraio & Léopold Simar, 2007. "Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach," Journal of Productivity Analysis, Springer, vol. 28(1), pages 13-32, October.
    19. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    20. Piacenza, Massimiliano & Vannoni, Davide, 2004. "Choosing among alternative cost function specifications: an application to Italian multi-utilities," Economics Letters, Elsevier, vol. 82(3), pages 415-422, March.
    21. Pastor, Jesus T. & Ruiz, Jose L. & Sirvent, Inmaculada, 1999. "A statistical test for detecting influential observations in DEA," European Journal of Operational Research, Elsevier, vol. 115(3), pages 542-554, June.
    22. Bottasso, Anna & Conti, Maurizio, 2009. "Scale economies, technology and technical change in the water industry: Evidence from the English water only sector," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 138-147, March.
    23. Massimo Filippini & Nevenka Hrovatin & Jelena Zorić, 2008. "Cost efficiency of Slovenian water distribution utilities: an application of stochastic frontier methods," Journal of Productivity Analysis, Springer, vol. 29(2), pages 169-182, April.
    24. Michael Zschille & Matthias Walter, 2012. "The performance of German water utilities: a (semi)-parametric analysis," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3749-3764, October.
    25. Subal Kumbhakar & Efthymios Tsionas, 2008. "Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from the U.S. commercial banks," Empirical Economics, Springer, vol. 34(3), pages 585-602, June.
    26. Astrid Cullmann, 2012. "Benchmarking and firm heterogeneity: a latent class analysis for German electricity distribution companies," Empirical Economics, Springer, vol. 42(1), pages 147-169, February.
    27. Racine, Jeff, 1997. "Consistent Significance Testing for Nonparametric Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 369-378, July.
    28. Thanassoulis, Emmanuel, 2000. "The use of data envelopment analysis in the regulation of UK water utilities: Water distribution," European Journal of Operational Research, Elsevier, vol. 126(2), pages 436-453, October.
    29. Marques, Rui Cunha & De Witte, Kristof, 2011. "Is big better? On scale and scope economies in the Portuguese water sector," Economic Modelling, Elsevier, vol. 28(3), pages 1009-1016, May.
    30. De Witte, Kristof & Mika, Kortelainen, 2009. "Blaming the exogenous environment? Conditional efficiency estimation with continuous and discrete exogenous variables," MPRA Paper 14034, University Library of Munich, Germany.
    31. John K. Ashton, 2003. "Capital Utilisation and Scale in the English and Welsh Water Industry," The Service Industries Journal, Taylor & Francis Journals, vol. 23(5), pages 137-149, November.
    32. Rita Martins & Fernando Coelho & Adelino Fortunato, 2012. "Water losses and hydrographical regions influence on the cost structure of the Portuguese water industry," Journal of Productivity Analysis, Springer, vol. 38(1), pages 81-94, August.
    33. Paola Fabbri & Giovanni Fraquelli, 2000. "Costs and Structure of Technology in the Italian Water Industry," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 27(1), pages 65-82, March.
    34. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    35. John Ashton, 2000. "Cost efficiency in the UK water and sewerage industry," Applied Economics Letters, Taylor & Francis Journals, vol. 7(7), pages 455-458.
    36. repec:bla:scandj:v:87:y:1985:i:4:p:594-604 is not listed on IDEAS
    37. V E Krivonozhko & O B Utkin & A V Volodin & I A Sablin & M Patrin, 2004. "Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1049-1058, October.
    38. Antonioli, B. & Filippini, M., 2001. "The use of a variable cost function in the regulation of the Italian water industry," Utilities Policy, Elsevier, vol. 10(3-4), pages 181-187.
    39. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    40. Rita Martins & Adelino Fortunato & Fernando Coelho, 2006. "Cost Structure of the Portuguese Water Industry: a Cubic Cost Function Application," GEMF Working Papers 2006-09, GEMF, Faculty of Economics, University of Coimbra.
    41. Uwe Jensen, 2000. "Is it efficient to analyse efficiency rankings?," Empirical Economics, Springer, vol. 25(2), pages 189-208.
    42. Andres Picazo-Tadeo & Francisco Saez-Fernandez & Francisco Gonzalez-Gomez, 2009. "The role of environmental factors in water utilities' technical efficiency. Empirical evidence from Spanish companies," Applied Economics, Taylor & Francis Journals, vol. 41(5), pages 615-628.
    43. David Saal & David Parker & Tom Weyman-Jones, 2007. "Determining the contribution of technical change, efficiency change and scale change to productivity growth in the privatized English and Welsh water and sewerage industry: 1985–2000," Journal of Productivity Analysis, Springer, vol. 28(1), pages 127-139, October.
    44. Abbott, Malcolm & Cohen, Bruce, 2009. "Productivity and efficiency in the water industry," Utilities Policy, Elsevier, vol. 17(3-4), pages 233-244, September.
    45. Serge Garcia & Alban Thomas, 2001. "The Structure of Municipal Water Supply Costs: Application to a Panel of French Local Communities," Journal of Productivity Analysis, Springer, vol. 16(1), pages 5-29, July.
    46. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    47. Finn Førsund & Lennart Hjalmarsson & Vladimir Krivonozhko & Oleg Utkin, 2007. "Calculation of scale elasticities in DEA models: direct and indirect approaches," Journal of Productivity Analysis, Springer, vol. 28(1), pages 45-56, October.
    48. Michael Zschille, 2012. "Consolidating the Water Industry: An Analysis of the Potential Gains from Horizontal Integration in a Conditional Efficiency Framework," Discussion Papers of DIW Berlin 1187, DIW Berlin, German Institute for Economic Research.
    49. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    50. Giovanni Fraquelli & Massimiliano Piacenza & Davide Vannoni, 2004. "Scope and scale economies in multi-utilities: evidence from gas, water and electricity combinations," Applied Economics, Taylor & Francis Journals, vol. 36(18), pages 2045-2057.
    51. Tupper, Henrique Cesar & Resende, Marcelo, 2004. "Efficiency and regulatory issues in the Brazilian water and sewage sector: an empirical study," Utilities Policy, Elsevier, vol. 12(1), pages 29-40, March.
    52. Kristof Witte & Rui Marques, 2011. "Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 213-226, June.
    53. K De Witte & E Dijkgraaf, 2010. "Mean and bold? On separating merger economies from structural efficiency gains in the drinking water sector," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 222-234, February.
    54. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    55. Zschille, Michael, 2012. "Consolidating the Water Industry: An Analysis of the Potential Gains from Horizontal Integration in a Conditional Efficiency Fr," CEPR Discussion Papers 8737, C.E.P.R. Discussion Papers.
    56. Tim Coelli & Denis Lawrence (ed.), 2006. "Performance Measurement and Regulation of Network Utilities," Books, Edward Elgar Publishing, number 3801.
    57. Peter Bogetoft & Lars Otto, 2011. "Benchmarking with DEA, SFA, and R," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7961-2, January.
    58. David S Saal & David Parker, 2000. "The impact of privatization and regulation on the water and sewerage industry in England and Wales: a translog cost function model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 253-268.
    59. Johannes Sauer, 2006. "Economic Theory and Econometric Practice: Parametric Efficiency Analysis," Empirical Economics, Springer, vol. 31(4), pages 1061-1087, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2016. "Nonparametric Estimation of Efficiency in the Presence of Environmental Variables," LIDAM Discussion Papers ISBA 2016027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Walheer, Barnabé, 2018. "Aggregation of metafrontier technology gap ratios: the case of European sectors in 1995–2015," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1013-1026.
    3. Fazıl Gökgöz & Mustafa Taylan Güvercin, 2018. "Investigating the total factor productivity changes in the top ICT companies worldwide," Electronic Commerce Research, Springer, vol. 18(4), pages 791-811, December.
    4. Hellwig, Michael & Polk, Andreas, 2021. "Do political links influence water prices? Determinants of water prices in Germany," Utilities Policy, Elsevier, vol. 70(C).
    5. Michael Zschille, 2014. "Marktstrukturen in der Trinkwasserversorgung," DIW Roundup: Politik im Fokus 43, DIW Berlin, German Institute for Economic Research.
    6. Baležentis, Tomas & De Witte, Kristof, 2015. "One- and multi-directional conditional efficiency measurement – Efficiency in Lithuanian family farms," European Journal of Operational Research, Elsevier, vol. 245(2), pages 612-622.
    7. Michael Zschille, 2016. "Cost Structure and Economies of Scale in German Water Supply," Discussion Papers of DIW Berlin 1576, DIW Berlin, German Institute for Economic Research.
    8. Martins, Rita & Fortunato, Adelino, 2016. "Critical analysis of the Portuguese Water Industry Restructuring Plan," Utilities Policy, Elsevier, vol. 43(PB), pages 131-139.
    9. Caroline Stiel, 2017. "Modern Public Enterprises: Organisational Innovation and Productivity," Discussion Papers of DIW Berlin 1713, DIW Berlin, German Institute for Economic Research.
    10. Barnabé Walheer, 2019. "Scale, congestion, and technical efficiency of European countries: a sector-based nonparametric approach," Empirical Economics, Springer, vol. 56(6), pages 2025-2078, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Zschille, 2015. "Consolidating the water industry: an analysis of the potential gains from horizontal integration in a conditional efficiency framework," Journal of Productivity Analysis, Springer, vol. 44(1), pages 97-114, August.
    2. Zschille, Michael, 2012. "Consolidating the Water Industry: An Analysis of the Potential Gains from Horizontal Integration in a Conditional Efficiency Fr," CEPR Discussion Papers 8737, C.E.P.R. Discussion Papers.
    3. Michael Zschille, 2012. "Consolidating the Water Industry: An Analysis of the Potential Gains from Horizontal Integration in a Conditional Efficiency Framework," Discussion Papers of DIW Berlin 1187, DIW Berlin, German Institute for Economic Research.
    4. Michael Zschille, 2014. "Marktstrukturen in der Trinkwasserversorgung," DIW Roundup: Politik im Fokus 43, DIW Berlin, German Institute for Economic Research.
    5. Michael Zschille, 2016. "Cost Structure and Economies of Scale in German Water Supply," Discussion Papers of DIW Berlin 1576, DIW Berlin, German Institute for Economic Research.
    6. Michael Zschille & Matthias Walter, 2012. "The performance of German water utilities: a (semi)-parametric analysis," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3749-3764, October.
    7. Andrea Guerrini & Giulia Romano & Bettina Campedelli, 2013. "Economies of Scale, Scope, and Density in the Italian Water Sector: A Two-Stage Data Envelopment Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4559-4578, October.
    8. Saal David S. & Arocena Pablo & Maziotis Alexandros & Triebs Thomas, 2013. "Scale and Scope Economies and the Efficient Vertical and Horizontal Configuration of the Water Industry: A Survey of the Literature," Review of Network Economics, De Gruyter, vol. 12(1), pages 93-129, March.
    9. Carvalho, Pedro & Marques, Rui Cunha & Berg, Sanford, 2012. "A meta-regression analysis of benchmarking studies on water utilities market structure," Utilities Policy, Elsevier, vol. 21(C), pages 40-49.
    10. Walter, Matthias & Cullmann, Astrid & von Hirschhausen, Christian & Wand, Robert & Zschille, Michael, 2009. "Quo vadis efficiency analysis of water distribution? A comparative literature review," Utilities Policy, Elsevier, vol. 17(3-4), pages 225-232, September.
    11. Guerrini, Andrea & Romano, Giulia & Leardini, Chiara, 2018. "Economies of scale and density in the Italian water industry: A stochastic frontier approach," Utilities Policy, Elsevier, vol. 52(C), pages 103-111.
    12. Picazo-Tadeo, Andrés J. & Sáez-Fernández, Francisco J. & González-Gómez, Francisco, 2008. "Assesing Performance in the Management of the Urban Water Cycle," Efficiency Series Papers 2008/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    13. Abbott, Malcolm & Cohen, Bruce, 2009. "Productivity and efficiency in the water industry," Utilities Policy, Elsevier, vol. 17(3-4), pages 233-244, September.
    14. Romano, Giulia & Guerrini, Andrea, 2011. "Measuring and comparing the efficiency of water utility companies: A data envelopment analysis approach," Utilities Policy, Elsevier, vol. 19(3), pages 202-209.
    15. Augusto Mercadier & Walter Cont & Gustavo Ferro, 2016. "Economies of scale in Peru’s water and sanitation sector," Journal of Productivity Analysis, Springer, vol. 45(2), pages 215-228, April.
    16. Graziano Abrate & Fabrizio Erbetta & Giovanni Fraquelli, 2011. "Public utility planning and cost efficiency in a decentralized regulation context: the case of the Italian integrated water service," Journal of Productivity Analysis, Springer, vol. 35(3), pages 227-242, June.
    17. Hennebel, Veerle & Simper, Richard & Verschelde, Marijn, 2017. "Is there a prison size dilemma? An empirical analysis of output-specific economies of scale," European Journal of Operational Research, Elsevier, vol. 262(1), pages 306-321.
    18. Halkos, George & Tzeremes, Nickolaos, 2011. "A conditional full frontier approach for investigating the Averch-Johnson effect," MPRA Paper 35491, University Library of Munich, Germany.
    19. Picazo-Tadeo, Andres J. & Saez-Fernandez, Francisco J. & Gonzalez-Gomez, Francisco, 2008. "Does service quality matter in measuring the performance of water utilities," Utilities Policy, Elsevier, vol. 16(1), pages 30-38, March.
    20. Tourinho, Marco & Santos, Paulo Rosa & Pinto, Francisco Taveira & Camanho, Ana S., 2022. "Performance assessment of water services in Brazilian municipalities: An integrated view of efficiency and access," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).

    More about this item

    Keywords

    Water supply; Data envelopment analysis; Scale elasticity; Returns to scale; Conditional efficiency; Nonparametric estimation; C14; L22; L95; Q25;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • L22 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Organization and Market Structure
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:47:y:2014:i:3:p:1029-1053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.