IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/120828.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Sustainable Growth and Secular Trends

Author

Listed:
  • Peretto, Pietro
  • Valente, Simone

Abstract

We fully characterize the transition to sustained growth of resource-constrained economies using a model of industrialization that reproduces key stylized facts of resource use and prices. Natural scarcity, endogenous demography and innovations generate different growth regimes: knowledge-based innovations can potentially feed productivity growth in the long run, but exhaustible primary inputs and population pressure may halt economic development at earlier stages. Our model reproduces two well-documented empirical regularities -- a U-shaped path of resource prices and a hump-shaped path of resource extraction -- as secular trends that arise across growth regimes. Resource use and prices reach their respective turning points at different stages of development, and we may observe a peak in extraction followed by a long period where both resource use and its market price fall. The decoupling of price and quantity dynamics hinges on general-equilibrium interactions between demography and three sources of endogenous technological change, namely, increases in the mass of intermediate firms, vertical innovations within each intermediate firm, and endogenous extraction costs affected by learning-by-doing in the primary sector.

Suggested Citation

  • Peretto, Pietro & Valente, Simone, 2024. "Sustainable Growth and Secular Trends," MPRA Paper 120828, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:120828
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/120828/1/MPRA_paper_120828.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Berck, Peter & Roberts, Michael, 1996. "Natural Resource Prices: Will They Ever Turn Up?," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 65-78, July.
    3. Bretschger, Lucas, 2020. "Malthus in the light of climate change," European Economic Review, Elsevier, vol. 127(C).
    4. Sjak Smulders, 1995. "Entropy, environment, and endogenous economic growth," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 319-340, August.
    5. Pietro Peretto & Simone Valente, 2015. "Growth on a finite planet: resources, technology and population in the long run," Journal of Economic Growth, Springer, vol. 20(3), pages 305-331, September.
    6. John Hassler & Per Krusell & Conny Olovsson, 2021. "Directed Technical Change as a Response to Natural Resource Scarcity," Journal of Political Economy, University of Chicago Press, vol. 129(11), pages 3039-3072.
    7. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(3), pages 973-1006, August.
    8. Grimaud, Andre & Rouge, Luc, 2003. "Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 433-453, March.
    9. Edward Barbier, 1999. "Endogenous Growth and Natural Resource Scarcity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 14(1), pages 51-74, July.
    10. Smith, James L., 2012. "On the portents of peak oil (and other indicators of resource scarcity)," Energy Policy, Elsevier, vol. 44(C), pages 68-78.
    11. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    12. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    13. Smulders, J.A., 2005. "Endogenous technological change, natural resources and growth," Other publications TiSEM d6e27500-7604-420f-9961-4, Tilburg University, School of Economics and Management.
    14. Di Maria, Corrado & Valente, Simone, 2008. "Hicks meets Hotelling: the direction of technical change in capital–resource economies," Environment and Development Economics, Cambridge University Press, vol. 13(6), pages 691-717, December.
    15. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    16. Margaret E. Slade & Henry Thille, 2009. "Whither Hotelling: Tests of the Theory of Exhaustible Resources," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 239-259, September.
    17. Slade, Margaret E., 1982. "Trends in natural-resource commodity prices: An analysis of the time domain," Journal of Environmental Economics and Management, Elsevier, vol. 9(2), pages 122-137, June.
    18. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    19. Bruno Lanz & Simon Dietz & Timothy Swanson, 2017. "Global Population Growth, Technology, And Malthusian Constraints: A Quantitative Growth Theoretic Perspective," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58, pages 973-1006, August.
    20. Peretto, Pietro F., 2021. "Through scarcity to prosperity: Toward a theory of sustainable growth," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 243-257.
    21. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    2. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    3. Bretschger, Lucas, 2020. "Malthus in the light of climate change," European Economic Review, Elsevier, vol. 127(C).
    4. Lucas Bretschger, 2022. "Green Road is Open: Economic Pathway with a Carbon Price Escalator," CER-ETH Economics working paper series 22/375, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    5. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    6. Xiaoyi Mu and Haichun Ye, 2015. "Small Trends and Big Cycles in Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    8. Bretschger, Lucas, 2024. "Energy transition and climate change abatement: A macroeconomic analysis," Resource and Energy Economics, Elsevier, vol. 76(C).
    9. Lucas Bretschger, 2016. "Is the Environment Compatible with Growth? Adopting an Integrated Framework," CER-ETH Economics working paper series 16/260, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    10. Cuddington, John T. & Nülle, Grant, 2014. "Variable long-term trends in mineral prices: The ongoing tug-of-war between exploration, depletion, and technological change," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 224-252.
    11. Lucas Bretschger & Karen Pittel, 2020. "Twenty Key Challenges in Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 725-750, December.
    12. Di Vita, Giuseppe, 2007. "Exhaustible resources and secondary materials: A macroeconomic analysis," Ecological Economics, Elsevier, vol. 63(1), pages 138-148, June.
    13. Cynthia Lin, C.-Y. & Wagner, Gernot, 2007. "Steady-state growth in a Hotelling model of resource extraction," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 68-83, July.
    14. Margaret E. Slade & Henry Thille, 2009. "Whither Hotelling: Tests of the Theory of Exhaustible Resources," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 239-259, September.
    15. Hori, Takeo & Yamagami, Hiroaki, 2014. "Intellectual property rights protection in the presence of exhaustible resources," MPRA Paper 58064, University Library of Munich, Germany.
    16. Martin Stürmer & Gregor Schwerhoff, 2012. "Non-Renewable but Inexhaustible – Resources in an Endogenous Growth Model," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2012_09, Max Planck Institute for Research on Collective Goods.
    17. Takeo Hori & Hiroaki Yamagami, 2018. "Intellectual property rights protection in the presence of exhaustible resources," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 759-784, October.
    18. Zaklan, Aleksandar & Abrell, Jan & Neumann, Anne, 2016. "Stationarity changes in long-run energy commodity prices," Energy Economics, Elsevier, vol. 59(C), pages 96-103.
    19. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    20. Soren T. Anderson & Ryan Kellogg & Stephen W. Salant, 2018. "Hotelling under Pressure," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 984-1026.

    More about this item

    Keywords

    Endogenous Growth; Population; Natural Resources; Sustainability.;
    All these keywords.

    JEL classification:

    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • L16 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Industrial Organization and Macroeconomics; Macroeconomic Industrial Structure
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:120828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.