IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/106248.html
   My bibliography  Save this paper

Asset allocation in extreme market conditions: a comparative analysis between developed and emerging economies

Author

Listed:
  • Montshioa, Keitumetse
  • Muteba Mwamba, John Weirstrass
  • Bonga-Bonga, Lumengo

Abstract

This study makes use of the Extreme Value Theory, based on the Generalised Pareto Distribution and the Generalised Extreme Value Distribution, to construct efficient portfolios during periods of turmoil. The portfolios are constructed by combining different assets constituted by their positions in emerging and developed stock markets, with the aim of identifying which assets combinations provide optimal portfolio allocations during turmoil periods. For the developed stock markets, the study uses the French CAC 40, the Canadian S&P/TSX, the United Kingdom FTSE 100, the Japanese NIKKEI 225 and the United States S&P500 indices and returns. Five emerging stock markets indices are used, namely, the Brazilian BOVESPA, the Chinese SHCOMP the Indian S&P BSE SENEX, Indonesian JSI and the Turkish BIST 100. The data sample spans from August 1997 to August 2019 and include major economic and financial crises. Our findings show that for the different portfolios constructed, the estimated shape, location, and scale parameters differ depending on the Extreme Value Theory distribution under investigation. Moreover, based on the Generalised Pareto Distribution and the Generalised Extreme Value Distribution for portfolio optimisation, the results of the study show that during extreme conditions investors are prone to allocate more weight to developed stock market assets than to emerging markets. This confirms that developed economies are safe havens, especially during extreme market conditions. Moreover, the GPD is superior as it provides maximum risk-reward ratios.

Suggested Citation

  • Montshioa, Keitumetse & Muteba Mwamba, John Weirstrass & Bonga-Bonga, Lumengo, 2021. "Asset allocation in extreme market conditions: a comparative analysis between developed and emerging economies," MPRA Paper 106248, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:106248
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/106248/1/MPRA_paper_106248.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    2. Harvey, Campbell R, 1995. "Predictable Risk and Returns in Emerging Markets," The Review of Financial Studies, Society for Financial Studies, vol. 8(3), pages 773-816.
    3. Rafaqet Ali & Muhammad Afzal, 2012. "Impact of global financial crisis on stock markets: Evidence from Pakistan and India," E3 Journal of Business Management and Economics., E3 Journals, vol. 3(7), pages 275-282.
    4. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.
    5. George Soros, 1999. "The International Financial Crisis," Challenge, Taylor & Francis Journals, vol. 42(2), pages 58-76, March.
    6. Corsetti, Giancarlo & Pesenti, Paolo & Roubini, Nouriel, 1999. "Paper tigers?: A model of the Asian crisis," European Economic Review, Elsevier, vol. 43(7), pages 1211-1236, June.
    7. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    8. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    9. Nelson, Daniel B., 1992. "Filtering and forecasting with misspecified ARCH models I : Getting the right variance with the wrong model," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 61-90.
    10. Hyung, Namwon & de Vries, Casper G., 2007. "Portfolio selection with heavy tails," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 383-400, June.
    11. Bailey,Roy E., 2005. "The Economics of Financial Markets," Cambridge Books, Cambridge University Press, number 9780521612807, September.
    12. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    13. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    14. Marco Tronzano, 2020. "Safe-Haven Assets, Financial Crises, and Macroeconomic Variables: Evidence from the Last Two Decades (2000–2018)," JRFM, MDPI, vol. 13(3), pages 1-21, February.
    15. Samarakoon, Lalith P., 2017. "Contagion of the eurozone debt crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 49(C), pages 115-128.
    16. Lagoarde-Segot, Thomas & Lucey, Brian M., 2007. "International portfolio diversification: Is there a role for the Middle East and North Africa?," Journal of Multinational Financial Management, Elsevier, vol. 17(5), pages 401-416, December.
    17. Yannick Malevergne & Vladilen Pisarenko & Didier Sornette, 2006. "On the Power of Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD) Estimators for Empirical Distributions of Stock Returns," Post-Print hal-02311834, HAL.
    18. Arzac, Enrique R. & Bawa, Vijay S., 1977. "Portfolio choice and equilibrium in capital markets with safety-first investors," Journal of Financial Economics, Elsevier, vol. 4(3), pages 277-288, May.
    19. Thomas C. Chiang & Yuanqing Zhang, 2018. "An Empirical Investigation of Risk-Return Relations in Chinese Equity Markets: Evidence from Aggregate and Sectoral Data," IJFS, MDPI, vol. 6(2), pages 1-22, March.
    20. K. Saranya & P. Prasanna, 2014. "Portfolio Selection and Optimization with Higher Moments: Evidence from the Indian Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 133-149, May.
    21. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    22. Cohen, Benjamin H. & Remolona, Eli M., 2008. "Information flows during the Asian crisis: Evidence from closed-end funds," Journal of International Money and Finance, Elsevier, vol. 27(4), pages 636-653, June.
    23. R. Glenn Hubbard, 1991. "Introduction to "Financial Markets and Financial Crises"," NBER Chapters, in: Financial Markets and Financial Crises, pages 1-10, National Bureau of Economic Research, Inc.
    24. Nelson, Daniel B. & Foster, Dean P., 1995. "Filtering and forecasting with misspecified ARCH models II : Making the right forecast with the wrong model," Journal of Econometrics, Elsevier, vol. 67(2), pages 303-335, June.
    25. Alain Kabundi & John Mwamba Muteba, 2011. "Extreme Value At Risk: A Scenario For Risk Management," South African Journal of Economics, Economic Society of South Africa, vol. 79(2), pages 173-183, June.
    26. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    27. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    28. Pellegrini, Santiago & Ruiz, Esther & Espasa, Antoni, 2010. "Conditionally heteroscedastic unobserved component models and their reduced form," Economics Letters, Elsevier, vol. 107(2), pages 88-90, May.
    29. Juha Uotila & Markku Maula & Thomas Keil & Shaker A. Zahra, 2009. "Exploration, exploitation, and financial performance: analysis of S&P 500 corporations," Strategic Management Journal, Wiley Blackwell, vol. 30(2), pages 221-231, February.
    30. Ibragimov, Marat & Ibragimov, Rustam & Kattuman, Paul, 2013. "Emerging markets and heavy tails," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2546-2559.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    32. Calice, Giovanni & Chen, Jing & Williams, Julian, 2013. "Liquidity spillovers in sovereign bond and CDS markets: An analysis of the Eurozone sovereign debt crisis," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 122-143.
    33. R. Glenn Hubbard, 1991. "Financial Markets and Financial Crises," NBER Books, National Bureau of Economic Research, Inc, number glen91-1.
    34. Muteba Mwamba, John W. & Hammoudeh, Shawkat & Gupta, Rangan, 2017. "Financial tail risks in conventional and Islamic stock markets: A comparative analysis," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 60-82.
    35. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    36. Susmel, Raul, 2001. "Extreme observations and diversification in Latin American emerging equity markets," Journal of International Money and Finance, Elsevier, vol. 20(7), pages 971-986, December.
    37. François-Serge LHABITANT, 2001. "Assessing Market Risk for Hedge Funds Portfolios," FAME Research Paper Series rp24, International Center for Financial Asset Management and Engineering.
    38. Muteba Mwamba, John, 2012. "On the optimality of hedge fund investment strategies: a Bayesian skew t distribution model," MPRA Paper 50323, University Library of Munich, Germany.
    39. Pownall, Rachel A. J. & Koedijk, Kees G., 1999. "Capturing downside risk in financial markets: the case of the Asian Crisis," Journal of International Money and Finance, Elsevier, vol. 18(6), pages 853-870, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonga-Bonga, Lumengo & Montshioa, Keitumetse, 2024. "Navigating extreme market fluctuations: asset allocation strategies in developed vs. emerging economies," MPRA Paper 119910, University Library of Munich, Germany.
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    4. Gagnon, Louis & Karolyi, G. Andrew, 2006. "Price and Volatility Transmission across Borders," Working Paper Series 2006-5, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    5. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    6. Moore, Kyle & Sun, Pengfei & de Vries, Casper G. & Zhou, Chen, 2013. "The cross-section of tail risks in stock returns," MPRA Paper 45592, University Library of Munich, Germany.
    7. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    8. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    9. Ergun, Lerby M., 2023. "Extreme downside risk in the cross-section of asset returns," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    11. Dias, Alexandra, 2014. "Semiparametric estimation of multi-asset portfolio tail risk," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 398-408.
    12. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    13. Moore, Kyle & Sun, Pengei & de Vries, Casper G. & Zhou, Chen, 2013. "The drivers of downside equity tail risk," MPRA Paper 45591, University Library of Munich, Germany.
    14. Wolff, Christian & Lehnert, Thorsten, 2001. "Modelling Scale-Consistent VaR with the Truncated Lévy Flight," CEPR Discussion Papers 2711, C.E.P.R. Discussion Papers.
    15. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    16. Lehnert, Thorsten & Wolff, Christian C. P., 2004. "Scale-consistent Value-at-Risk," Finance Research Letters, Elsevier, vol. 1(2), pages 127-134, June.
    17. Chebbi, Ali & Hedhli, Amel, 2022. "Revisiting the accuracy of standard VaR methods for risk assessment: Using the Copula–EVT multidimensional approach for stock markets in the MENA region," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 430-445.
    18. Haque, Mahfuzul & Kabir Hassan, M. & Varela, Oscar, 2004. "Safety-first portfolio optimization for US investors in emerging global, Asian and Latin American markets," Pacific-Basin Finance Journal, Elsevier, vol. 12(1), pages 91-116, January.
    19. Zhou, Chen, 2010. "Dependence structure of risk factors and diversification effects," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 531-540, June.
    20. Assaf, A., 2009. "Extreme observations and risk assessment in the equity markets of MENA region: Tail measures and Value-at-Risk," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 109-116, June.

    More about this item

    Keywords

    asset allocation; extreme value; developing economies; emerging markets;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:106248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.