IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v461y2016icp148-157.html
   My bibliography  Save this article

Regime switching model for financial data: Empirical risk analysis

Author

Listed:
  • Salhi, Khaled
  • Deaconu, Madalina
  • Lejay, Antoine
  • Champagnat, Nicolas
  • Navet, Nicolas

Abstract

This paper constructs a regime switching model for the univariate Value-at-Risk estimation. Extreme value theory (EVT) and hidden Markov models (HMM) are combined to estimate a hybrid model that takes volatility clustering into account. In the first stage, HMM is used to classify data in crisis and steady periods, while in the second stage, EVT is applied to the previously classified data to rub out the delay between regime switching and their detection. This new model is applied to prices of numerous stocks exchanged on NYSE Euronext Paris over the period 2001–2011. We focus on daily returns for which calibration has to be done on a small dataset. The relative performance of the regime switching model is benchmarked against other well-known modeling techniques, such as stable, power laws and GARCH models. The empirical results show that the regime switching model increases predictive performance of financial forecasting according to the number of violations and tail-loss tests. This suggests that the regime switching model is a robust forecasting variant of power laws model while remaining practical to implement the VaR measurement.

Suggested Citation

  • Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
  • Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:148-157
    DOI: 10.1016/j.physa.2016.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711630187X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Abhay K. & Allen, David E. & Robert, Powell J., 2013. "Extreme market risk and extreme value theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 310-328.
    2. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    3. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    4. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    5. Fama, Eugene F, 1971. "Risk, Return, and Equilibrium," Journal of Political Economy, University of Chicago Press, vol. 79(1), pages 30-55, Jan.-Feb..
    6. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    7. Rafał Weron, 2001. "Levy-Stable Distributions Revisited: Tail Index> 2does Not Exclude The Levy-Stable Regime," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 209-223.
    8. Danielsson, Jon & Morimoto, Yuji, 2000. "Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 18(2), pages 25-48, December.
    9. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    10. Huntley Schaller & Simon Van Norden, 1997. "Regime switching in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 7(2), pages 177-191.
    11. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    12. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    13. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    14. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    15. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    16. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    17. Y. Malevergne & V. Pisarenko & D. Sornette, 2006. "On the power of generalized extreme value (GEV) and generalized Pareto distribution (GPD) estimators for empirical distributions of stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(3), pages 271-289.
    18. Toker Doganoglu & Christoph Hartz & Stefan Mittnik, 2007. "Portfolio optimization when risk factors are conditionally varying and heavy tailed," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 333-354, May.
    19. McCulloch, J Huston, 1997. "Measuring Tail Thickness to Estimate the Stable Index Alpha: A Critique," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 74-81, January.
    20. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    21. Cifter, Atilla, 2011. "Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2356-2367.
    22. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    23. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    24. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    25. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 531-554, December.
    26. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    27. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wei-han, 2018. "Hidden Markov model analysis of extreme behaviors of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1007-1019.
    2. Makoto Nirei & John Stachurski & Tsutomu Watanabe, 2018. "Trade Clustering and Power Laws in Financial Markets (Published in Theoretical Economics, 15:1365?1398, 2020)," CARF F-Series CARF-F-450, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Nirei, Makoto & Stachurski, John & Watanabe, Tsutomu, 2020. "Trade clustering and power laws in financial markets," Theoretical Economics, Econometric Society, vol. 15(4), November.
    4. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Working Papers hal-01669082, HAL.
    5. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    6. Tomáš Konderla & Václav Klepáč, 2017. "Using HMM Approach for Assessing Quality of Value at Risk Estimation: Evidence from PSE Listed Company," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(5), pages 1687-1694.
    7. Ahmed BenSaïda & Sabri Boubaker & Duc Khuong Nguyen & Skander Slim, 2018. "Value‐at‐risk under market shifts through highly flexible models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 790-804, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    2. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    3. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    4. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    5. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    6. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    7. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    8. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    9. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    10. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    11. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    12. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    13. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    14. Assaf, A., 2009. "Extreme observations and risk assessment in the equity markets of MENA region: Tail measures and Value-at-Risk," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 109-116, June.
    15. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    17. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    18. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    19. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    20. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:148-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.