IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/31558.html
   My bibliography  Save this paper

Artificial Intelligence and Scientific Discovery: A Model of Prioritized Search

Author

Listed:
  • Ajay K. Agrawal
  • John McHale
  • Alexander Oettl

Abstract

We model a key step in the innovation process, hypothesis generation, as the making of predictions over a vast combinatorial space. Traditionally, scientists and innovators use theory or intuition to guide their search. Increasingly, however, they use artificial intelligence (AI) instead. We model innovation as resulting from sequential search over a combinatorial design space, where the prioritization of costly tests is achieved using a predictive model. We represent the ranked output of the predictive model in the form of a hazard function. We then use discrete survival analysis to obtain the main innovation outcomes of interest – the probability of innovation, expected search duration, and expected profit. We describe conditions under which shifting from the traditional method of hypothesis generation, using theory or intuition, to instead using AI that generates higher fidelity predictions, results in a higher likelihood of successful innovation, shorter search durations, and higher expected profits. We then explore the complementarity between hypothesis generation and hypothesis testing; potential gains from AI may not be realized without significant investment in testing capacity. We discuss the policy implications.

Suggested Citation

  • Ajay K. Agrawal & John McHale & Alexander Oettl, 2023. "Artificial Intelligence and Scientific Discovery: A Model of Prioritized Search," NBER Working Papers 31558, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:31558
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w31558.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2021. "The Productivity J-Curve: How Intangibles Complement General Purpose Technologies," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 333-372, January.
    2. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    3. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    4. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    5. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    6. Partha Dasgupta & Joseph Stiglitz, 1980. "Uncertainty, Industrial Structure, and the Speed of R&D," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 1-28, Spring.
    7. Charles I. Jones, 2023. "Recipes and Economic Growth: A Combinatorial March Down an Exponential Tail," Journal of Political Economy, University of Chicago Press, vol. 131(8), pages 1994-2031.
    8. Jovanovic, Boyan & Rousseau, Peter L., 2005. "General Purpose Technologies," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 18, pages 1181-1224, Elsevier.
    9. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    10. Jens Ludwig & Sendhil Mullainathan, 2024. "Machine Learning as a Tool for Hypothesis Generation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(2), pages 751-827.
    11. Clancy, Matthew S., 2018. "Inventing by combining pre-existing technologies: Patent evidence on learning and fishing out," Research Policy, Elsevier, vol. 47(1), pages 252-265.
    12. Rosenberg, Nathan, 1974. "Science, Invention and Economic Growth," Economic Journal, Royal Economic Society, vol. 84(333), pages 90-108, March.
    13. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    14. Nicholas Crafts, 2021. "Artificial intelligence as a general-purpose technology: an historical perspective," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 521-536.
    15. Joshua L. Krieger, 2021. "Trials and Terminations: Learning from Competitors’ R&D Failures," Management Science, INFORMS, vol. 67(9), pages 5525-5548, September.
    16. Stefano Bianchini & Moritz Müller & Pierre Pelletier, 2022. "Artificial intelligence in science: An emerging general method of invention," Post-Print hal-03958025, HAL.
    17. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    18. Maryam Farboodi & Laura Veldkamp, 2021. "A Model of the Data Economy," NBER Working Papers 28427, National Bureau of Economic Research, Inc.
    19. Paul Raccuglia & Katherine C. Elbert & Philip D. F. Adler & Casey Falk & Malia B. Wenny & Aurelio Mollo & Matthias Zeller & Sorelle A. Friedler & Joshua Schrier & Alexander J. Norquist, 2016. "Machine-learning-assisted materials discovery using failed experiments," Nature, Nature, vol. 533(7601), pages 73-76, May.
    20. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Korinek & Donghyun Suh, 2024. "Scenarios for the Transition to AGI," NBER Working Papers 32255, National Bureau of Economic Research, Inc.
    2. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    3. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," GLO Discussion Paper Series 1467, Global Labor Organization (GLO).
    4. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    5. Jens Ludwig & Sendhil Mullainathan & Ashesh Rambachan, 2024. "Large Language Models: An Applied Econometric Framework," Papers 2412.07031, arXiv.org, revised Jan 2025.
    6. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2024. "Is Artificial Intelligence Generating a New Paradigm? Evidence from the Emerging Phase," IZA Discussion Papers 17183, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Philippon, 2022. "Additive Growth," NBER Working Papers 29950, National Bureau of Economic Research, Inc.
    2. Daniel Souza & Aldo Geuna & Jeff Rodr'iguez, 2024. "How Small is Big Enough? Open Labeled Datasets and the Development of Deep Learning," Papers 2408.10359, arXiv.org.
    3. Almeida, Derick & Naudé, Wim & Sequeira, Tiago Neves, 2024. "Artificial Intelligence and the Discovery of New Ideas: Is an Economic Growth Explosion Imminent?," IZA Discussion Papers 16766, Institute of Labor Economics (IZA).
    4. Mark Knell & Simone Vannuccini, 2022. "Tools and concepts for understanding disruptive technological change after Schumpeter," Jena Economics Research Papers 2022-005, Friedrich-Schiller-University Jena.
    5. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    6. Caleb Peppiatt, 2024. "The Future of Work: Inequality, Artificial Intelligence, and What Can Be Done About It. A Literature Review," Papers 2408.13300, arXiv.org.
    7. Maarten de Ridder, 2022. "Market power and innovation in the intangible economy," POID Working Papers 064, Centre for Economic Performance, LSE.
    8. Kemnitz, Alexander & Knoblach, Michael, 2020. "Endogenous sigma-augmenting technological change: An R&D-based approach," CEPIE Working Papers 02/20, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    9. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).
    10. Serguei Kaniovski & Thomas Url & Helmut Hofer & Viola Garstenauer, 2021. "A Long-run Macroeconomic Model of the Austrian Economy (A-LMM 2.0). New Results (2021)," WIFO Studies, WIFO, number 67377, January.
    11. Jacques Bughin & Nicolas van Zeebroeck, 2024. "Strategic Renewal and Corporate Return of Digital Transformation," Working Papers TIMES² 2024-071, ULB -- Universite Libre de Bruxelles.
    12. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    13. Philippe Aghion & Antonin Bergeaud & Timo Boppart & Peter J. Klenow & Huiyu Li, 2019. "Missing Growth from Creative Destruction," American Economic Review, American Economic Association, vol. 109(8), pages 2795-2822, August.
    14. Callaghan, Christian William, 2021. "Growth contributions of technological change: Is there a burden of knowledge effect?," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    15. Zuzanna Helena Zarach & Aleksandra Parteka, 2023. "Productivity effects of trade in natural resources—comparison with mechanisms of technological specialisation," The World Economy, Wiley Blackwell, vol. 46(9), pages 2684-2706, September.
    16. Ali Sina Önder & Sascha Schweitzer & Olga Tcaci, 2024. "Innovation and Regional Development: The Impact of Patenting on Labor Market Outcomes," Working Papers in Economics & Finance 2024-07, University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
    17. Ian Goldin & Pantelis Koutroumpis & François Lafond & Julian Winkler, 2024. "Why Is Productivity Slowing Down?," Journal of Economic Literature, American Economic Association, vol. 62(1), pages 196-268, March.
    18. Daron Acemoglu & David Autor & Christina Patterson, 2024. "Bottlenecks: Sectoral Imbalances and the US Productivity Slowdown," NBER Macroeconomics Annual, University of Chicago Press, vol. 38(1), pages 153-207.
    19. Colin Davis & Laixun Zhao, 2022. "Innovation to Keep or to Sell and Tax Incentives," Discussion Paper Series DP2022-28, Research Institute for Economics & Business Administration, Kobe University, revised Nov 2022.
    20. Cozzi, Guido, 2023. "Semi-endogenous or fully endogenous growth? A unified theory," Journal of Economic Theory, Elsevier, vol. 213(C).

    More about this item

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:31558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.