IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v209y2024ics0040162524006383.html
   My bibliography  Save this article

Unpacking the intellectual structure and evolution trend of general-purpose technologies development in innovation studies

Author

Listed:
  • Xu, Yanan
  • Sun, Yaowu
  • Zhou, Yiting

Abstract

General-purpose technologies (GPTs) are crucial for advancing long-term economic growth. Previous research on GPTs has primarily focused on economics. However, in the innovation field, firms face greater challenges in appropriability and value creation due to GPTs' externalities. Research on GPTs in this flexible field may exhibit unique characteristics. Despite growing academic interest, related research remains fragmented, lacking a comprehensive theoretical system. Traditional literature reviews and bibliometric analyses often focus on the most cited articles, leading to citation biases and an emphasis on impact over theme discovery. Combining topic modeling with manual coding allows for the iteration of existing theories and the creation of new theoretical frameworks. Our study analyzed 532 articles on GPTs in the innovation field, identifying 11 topics using the LDA topic model. Through manual coding and the PyLDAvis visualization tool, we identified four research areas: jungle of GPTs, profiting from GPTs innovation, industrial convergence, and economic growth and wage inequality. We examined the evolutionary trajectory, and theoretical architecture of GPTs research, proposing a comprehensive framework. We urge scholars to extend GPTs research from the firm to the ecosystem level, consider the standardization and evolution of next-generation GPTs, and diversify research methods.

Suggested Citation

  • Xu, Yanan & Sun, Yaowu & Zhou, Yiting, 2024. "Unpacking the intellectual structure and evolution trend of general-purpose technologies development in innovation studies," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524006383
    DOI: 10.1016/j.techfore.2024.123840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524006383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yubing & Lin, Ting & Zhang, Si, 2023. "Does complementary technology within an ecosystem affect disruptive innovation? Evidence from Chinese electric vehicle listed firms," Technology in Society, Elsevier, vol. 74(C).
    2. Bojovic, Neva, 2022. "Strategic framing of enabling technologies: Insights from firms digitizing smell and taste," Research Policy, Elsevier, vol. 51(3).
    3. Hornstein, Andreas & Krusell, Per & Violante, Giovanni L., 2005. "The Effects of Technical Change on Labor Market Inequalities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 20, pages 1275-1370, Elsevier.
    4. Sergio Petralia, 2020. "Mapping General Purpose Technologies with Patent Data," Papers in Evolutionary Economic Geography (PEEG) 2027, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jul 2020.
    5. Goldfarb, Avi & Taska, Bledi & Teodoridis, Florenta, 2023. "Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings," Research Policy, Elsevier, vol. 52(1).
    6. Rahul Kapoor & David J. Teece, 2021. "Three Faces of Technology’s Value Creation: Emerging, Enabling, Embedding," Strategy Science, INFORMS, vol. 6(1), pages 1-4, March.
    7. Arianna Martinelli & Andrea Mina & Massimo Moggi, 2021. "The enabling technologies of industry 4.0: examining the seeds of the fourth industrial revolution [Mapping innovation dynamics in the Internet of Things domain: evidence from patent analysis]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(1), pages 161-188.
    8. Jan Youtie & Maurizio Iacopetta & Stuart Graham, 2008. "Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology?," The Journal of Technology Transfer, Springer, vol. 33(3), pages 315-329, June.
    9. Liu, Yong & Du, Jun-liang & Yang, Jin-bi & Qian, Wu-yong & Forrest, Jeffrey Yi-Lin, 2019. "An incentive mechanism for general purpose technologies R&D based on the concept of super-conflict equilibrium: Empirical evidence from nano industrial technology in China," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 185-197.
    10. Teece, David J., 2018. "Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world," Research Policy, Elsevier, vol. 47(8), pages 1367-1387.
    11. Mohamed, Nader & Al-Jaroodi, Jameela & Jawhar, Imad & Idries, Ahmed & Mohammed, Farhan, 2020. "Unmanned aerial vehicles applications in future smart cities," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    12. Philippe Aghion & Benjamin F. Jones & Charles I. Jones, 2018. "Artificial Intelligence and Economic Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282, National Bureau of Economic Research, Inc.
    13. Andrew Atkeson & Patrick J. Kehoe, 2002. "The transition to a new economy after the Second Industrial Revolution," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    14. Mahka Moeen & Rajshree Agarwal & Sonali K. Shah, 2020. "Building Industries by Building Knowledge: Uncertainty Reduction over Industry Milestones," Strategy Science, INFORMS, vol. 5(3), pages 218-244, September.
    15. Ron Adner & Rahul Kapoor, 2010. "Value creation in innovation ecosystems: how the structure of technological interdependence affects firm performance in new technology generations," Strategic Management Journal, Wiley Blackwell, vol. 31(3), pages 306-333, March.
    16. Lo, Shih-tse & Sutthiphisal, Dhanoos, 2010. "Crossover Inventions and Knowledge Diffusion of General Purpose Technologies: Evidence from the Electrical Technology," The Journal of Economic History, Cambridge University Press, vol. 70(3), pages 744-764, September.
    17. Tassey, Gregory, 2000. "Standardization in technology-based markets," Research Policy, Elsevier, vol. 29(4-5), pages 587-602, April.
    18. Bianchini, Stefano & Müller, Moritz & Pelletier, Pierre, 2022. "Artificial intelligence in science: An emerging general method of invention," Research Policy, Elsevier, vol. 51(10).
    19. Josef Taalbi, 2019. "Origins and pathways of innovation in the third industrial revolution1," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(5), pages 1125-1148.
    20. Alfonso Gambardella & Sohvi Heaton & Elena Novelli & David J. Teece, 2021. "Profiting from Enabling Technologies?," Strategy Science, INFORMS, vol. 6(1), pages 75-90, March.
    21. Raffaele Conti & Alfonso Gambardella & Elena Novelli, 2019. "Specializing in general purpose technologies as a firm long-term strategy," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 28(2), pages 351-364.
    22. Stefano Bianchini & Moritz Müller & Pierre Pelletier, 2022. "Artificial intelligence in science: An emerging general method of invention," Post-Print hal-03958025, HAL.
    23. repec:adr:anecst:y:1998:i:49-50:p:02 is not listed on IDEAS
    24. Philippe Aghion & Peter Howitt, 1999. "On the Macroeconomic Effects of Major Technological Change," Nordic Journal of Political Economy, Nordic Journal of Political Economy, vol. 25, pages 15-32.
    25. Jovanovic, Boyan & Rousseau, Peter L., 2005. "General Purpose Technologies," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 18, pages 1181-1224, Elsevier.
    26. Schaefer, Andreas & Schiess, Daniel & Wehrli, Roger, 2014. "Long-term growth driven by a sequence of general purpose technologies," Economic Modelling, Elsevier, vol. 37(C), pages 23-31.
    27. Drejer, Ina, 2004. "Identifying innovation in surveys of services: a Schumpeterian perspective," Research Policy, Elsevier, vol. 33(3), pages 551-562, April.
    28. Elhanan Helpman & Manuel Trajtenberg, 1996. "Diffusion of General Purpose Technologies," NBER Working Papers 5773, National Bureau of Economic Research, Inc.
    29. Andergassen, Rainer & Nardini, Franco & Ricottilli, Massimo, 2017. "Innovation diffusion, general purpose technologies and economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 40(C), pages 72-80.
    30. Jason M. Rathje & Riitta Katila, 2021. "Enabling Technologies and the Role of Private Firms: A Machine Learning Matching Analysis," Strategy Science, INFORMS, vol. 6(1), pages 5-21, March.
    31. Engström, Emma & Strimling, Pontus, 2020. "Deep learning diffusion by infusion into preexisting technologies – Implications for users and society at large," Technology in Society, Elsevier, vol. 63(C).
    32. Ranfeng Qiu & John Cantwell, 2018. "The international geography of general purpose technologies (GPTs) and internationalisation of corporate technological innovation," Industry and Innovation, Taylor & Francis Journals, vol. 25(1), pages 1-24, January.
    33. Korzinov, Vladimir & Savin, Ivan, 2018. "General Purpose Technologies as an emergent property," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 88-104.
    34. Marios Kokkodis & Panagiotis G. Ipeirotis, 2021. "Demand-Aware Career Path Recommendations: A Reinforcement Learning Approach," Management Science, INFORMS, vol. 67(7), pages 4362-4383, July.
    35. Gambardella, Alfonso & Giarratana, Marco S., 2013. "General technological capabilities, product market fragmentation, and markets for technology," Research Policy, Elsevier, vol. 42(2), pages 315-325.
    36. Timothy Bresnahan & Pai-Ling Yin, 2010. "Reallocating innovative resources around growth bottlenecks," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(5), pages 1589-1627, October.
    37. Iain M. Cockburn & Rebecca Henderson & Scott Stern, 2018. "The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 115-146, National Bureau of Economic Research, Inc.
    38. Zheng, Yuelong & Zhou, Bingjie & Hao, Chen & Gao, Ruize & Li, Mengya, 2024. "Evolutionary game analysis on the cross-organizational cooperative R&D strategy of general purpose technologies under two-way collaboration," Technology in Society, Elsevier, vol. 76(C).
    39. Nathan Rosenberg & Manuel Trajtenberg, 2009. "A General-Purpose Technology at Work: The Corliss Steam Engine in the Late-Nineteenth-Century United States," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 6, pages 97-135, World Scientific Publishing Co. Pte. Ltd..
    40. Bauer, Johannes M. & Knieps, Günter, 2018. "Complementary innovation and network neutrality," Telecommunications Policy, Elsevier, vol. 42(2), pages 172-183.
    41. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    42. Giovanni L. Violante, 2002. "Technological Acceleration, Skill Transferability, and the Rise in Residual Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 297-338.
    43. Hornstein, Andreas & Krusell, Per & Violante, Giovanni L., 2005. "The Effects of Technical Change on Labor Market Inequalities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 20, pages 1275-1370, Elsevier.
    44. Maine, Elicia & Garnsey, Elizabeth, 2006. "Commercializing generic technology: The case of advanced materials ventures," Research Policy, Elsevier, vol. 35(3), pages 375-393, April.
    45. Dirk Krueger & Krishna B. Kumar, 2004. "Skill-Specific rather than General Education: A Reason for US--Europe Growth Differences?," Journal of Economic Growth, Springer, vol. 9(2), pages 167-207, June.
    46. Lipsey, Richard G. & Carlaw, Kenneth I. & Bekar, Clifford T., 2005. "Economic Transformations: General Purpose Technologies and Long-Term Economic Growth," OUP Catalogue, Oxford University Press, number 9780199290895.
    47. Gould, Eric D & Moav, Omer & Weinberg, Bruce A, 2001. "Precautionary Demand for Education, Inequality, and Technological Progress," Journal of Economic Growth, Springer, vol. 6(4), pages 285-315, December.
    48. Benjamin Van Roy & Xiang Yan, 2010. "Manipulation Robustness of Collaborative Filtering," Management Science, INFORMS, vol. 56(11), pages 1911-1929, November.
    49. Leonard Dudley, 2010. "General Purpose Technologies and the Industrial Revolution," Papers on Economics and Evolution 2010-11, Philipps University Marburg, Department of Geography.
    50. Carlaw, Kenneth I. & Lipsey, Richard G., 2002. "Externalities, technological complementarities and sustained economic growth," Research Policy, Elsevier, vol. 31(8-9), pages 1305-1315, December.
    51. Clifford Bekar & Kenneth Carlaw & Richard Lipsey, 2018. "General purpose technologies in theory, application and controversy: a review," Journal of Evolutionary Economics, Springer, vol. 28(5), pages 1005-1033, December.
    52. Olga Kokshagina & Thomas Gillier & Patrick Cogez & Pascal Le Masson & Benoit Weil, 2017. "Using innovation contests to promote the development of generic technologies," Post-Print hal-01357051, HAL.
    53. Nicholas Crafts, 2021. "Artificial intelligence as a general-purpose technology: an historical perspective," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 521-536.
    54. Petralia, Sergio, 2020. "Mapping general purpose technologies with patent data," Research Policy, Elsevier, vol. 49(7).
    55. De Canio, Francesca & Fuentes-Blasco, Maria, 2021. "I need to touch it to buy it! How haptic information influences consumer shopping behavior across channels," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    56. Blind, Knut & Petersen, Sören S. & Riillo, Cesare A.F., 2017. "The impact of standards and regulation on innovation in uncertain markets," Research Policy, Elsevier, vol. 46(1), pages 249-264.
    57. repec:pri:cepsud:113krusell is not listed on IDEAS
    58. Wen, Wen & Forman, Chris & Jarvenpaa, Sirkka L, 2022. "The effects of technology standards on complementor innovations: Evidence from the IETF," Research Policy, Elsevier, vol. 51(6).
    59. Yuelong Zheng & Chunguang Bai & Lin Wang & Chunjia Han & Mu Yang & Anusha Pappu, 2024. "Evolutionary game analysis on the diffusion of general purpose technologies with government multiple supports," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 33(3), pages 436-454, April.
    60. Iain M. Cockburn & Rebecca Henderson & Scott Stern, 2018. "The Impact of Artificial Intelligence on Innovation," NBER Working Papers 24449, National Bureau of Economic Research, Inc.
    61. Nylund, Petra A. & Brem, Alexander & Agarwal, Nivedita, 2022. "Enabling technologies mitigating climate change: The role of dominant designs in environmental innovation ecosystems," Technovation, Elsevier, vol. 117(C).
    62. Joel Klinger & Juan Mateos-Garcia & Konstantinos Stathoulopoulos, 2021. "Deep learning, deep change? Mapping the evolution and geography of a general purpose technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5589-5621, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goldfarb, Avi & Taska, Bledi & Teodoridis, Florenta, 2023. "Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings," Research Policy, Elsevier, vol. 52(1).
    2. Bojovic, Neva, 2022. "Strategic framing of enabling technologies: Insights from firms digitizing smell and taste," Research Policy, Elsevier, vol. 51(3).
    3. Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    4. Heikkilä, Jussi & Rissanen, Julius & Ali-Vehmas, Timo, 2023. "Coopetition, standardization and general purpose technologies: A framework and an application," Telecommunications Policy, Elsevier, vol. 47(4).
    5. Xiang, Panwei & Wei, Muhua & Liu, Huili & Wu, Lianren & Qi, Jiayin, 2024. "How does technological value drive 6G development? Explanation from a systematic framework," Telecommunications Policy, Elsevier, vol. 48(7).
    6. Mark Knell & Simone Vannuccini, 2022. "Tools and concepts for understanding disruptive technological change after Schumpeter," Jena Economics Research Papers 2022-005, Friedrich-Schiller-University Jena.
    7. Appio, Francesco Paolo & Martini, Antonella & Fantoni, Gualtiero, 2017. "The light and shade of knowledge recombination: Insights from a general-purpose technology," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 154-165.
    8. Kerstin Hotte & Taheya Tarannum & Vilhelm Verendel & Lauren Bennett, 2022. "Measuring artificial intelligence: a systematic assessment and implications for governance," Papers 2204.10304, arXiv.org, revised Dec 2024.
    9. Liu, Yong & Du, Jun-liang & Yang, Jin-bi & Qian, Wu-yong & Forrest, Jeffrey Yi-Lin, 2019. "An incentive mechanism for general purpose technologies R&D based on the concept of super-conflict equilibrium: Empirical evidence from nano industrial technology in China," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 185-197.
    10. Uwe Cantner & Simone Vannuccini, 2012. "A New View of General Purpose Technologies," Jena Economics Research Papers 2012-054, Friedrich-Schiller-University Jena.
    11. Kroll, Henning & Berghäuser, Hendrik & Blind, Knut & Neuhäusler, Peter & Scheifele, Fabian & Thielmann, Axel & Wydra, Sven, 2022. "Schlüsseltechnologien," Studien zum deutschen Innovationssystem 7-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    12. Wen, Wen & Forman, Chris & Jarvenpaa, Sirkka L, 2022. "The effects of technology standards on complementor innovations: Evidence from the IETF," Research Policy, Elsevier, vol. 51(6).
    13. Yoruk, Esin & Radosevic, Slavo & Fischer, Bruno, 2023. "Technological profiles, upgrading and the dynamics of growth: Country-level patterns and trajectories across distinct stages of development," Research Policy, Elsevier, vol. 52(8).
    14. Haessler, Philipp & Giones, Ferran & Brem, Alexander, 2023. "The who and how of commercializing emerging technologies: A technology-focused review," Technovation, Elsevier, vol. 121(C).
    15. Enrico Santarelli & Jacopo Staccioli & Marco Vivarelli, 2023. "Automation and related technologies: a mapping of the new knowledge base," The Journal of Technology Transfer, Springer, vol. 48(2), pages 779-813, April.
    16. Zheng, Yuelong & Zhou, Bingjie & Hao, Chen & Gao, Ruize & Li, Mengya, 2024. "Evolutionary game analysis on the cross-organizational cooperative R&D strategy of general purpose technologies under two-way collaboration," Technology in Society, Elsevier, vol. 76(C).
    17. Kenneth Carlaw & Richard Lipsey, 2011. "Sustained endogenous growth driven by structured and evolving general purpose technologies," Journal of Evolutionary Economics, Springer, vol. 21(4), pages 563-593, October.
    18. Kemeny, Tom & Petralia, Sergio & Storper, Michael, 2022. "Disruptive innovation and spatial inequality," LSE Research Online Documents on Economics 115953, London School of Economics and Political Science, LSE Library.
    19. Teece, David J., 2018. "Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world," Research Policy, Elsevier, vol. 47(8), pages 1367-1387.
    20. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524006383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.