IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v211y2023icp188-205.html
   My bibliography  Save this article

Artificial intelligence and firm-level productivity

Author

Listed:
  • Czarnitzki, Dirk
  • Fernández, Gastón P.
  • Rammer, Christian

Abstract

Artificial Intelligence (AI) is often regarded as the next general-purpose technology with a rapid, penetrating, and far-reaching use over a broad number of industrial sectors. The main feature of new general-purpose technology is to enable new ways of production that may increase productivity. However, to date, only a few studies have investigated the likely productivity effects of AI at the firm-level, presumably due to limited data availability. We exploit unique survey data on firms’ adoption of AI technology and estimate its productivity effects with a sample of German firms. We employ both a cross-sectional dataset and a panel database. To address the potential endogeneity of AI adoption, we also implement IV estimators. We find positive and significant associations between the use of AI and firm productivity. This finding holds for different measures of AI usage, i.e., an indicator variable of AI adoption, and the intensity with which firms use AI methods in their business processes.

Suggested Citation

  • Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
  • Handle: RePEc:eee:jeborg:v:211:y:2023:i:c:p:188-205
    DOI: 10.1016/j.jebo.2023.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268123001531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2023.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2021. "The Productivity J-Curve: How Intangibles Complement General Purpose Technologies," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 333-372, January.
    2. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    3. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    4. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "Economic Policy for Artificial Intelligence," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
    5. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    6. Carol Corrado & Charles Hulten & Daniel Sichel, 2005. "Measuring Capital and Technology: An Expanded Framework," NBER Chapters, in: Measuring Capital in the New Economy, pages 11-46, National Bureau of Economic Research, Inc.
    7. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    8. Christian Rammer & Gastón P Fernández & Dirk Czarnitzki, 2021. "Artificial Intelligence and Industrial Innovation: Evidence from Firm-Level Data," Working Papers of Department of Management, Strategy and Innovation, Leuven 674605, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    9. Tania Babina & Alex X. He & Anastassia Fedyk & James Hodson, 2022. "Artificial Intelligence, Firm Growth, and Product Innovation," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
    10. Daron Acemoglu & Claire Lelarge & Pascual Restrepo, 2020. "Competing with Robots: Firm-Level Evidence from France," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 383-388, May.
    11. , & Stiebale, Joel & Woessner, Nicole, 2020. "Robots and the rise of European superstar firms," CEPR Discussion Papers 15080, C.E.P.R. Discussion Papers.
    12. Südekum, Jens & Dauth, Wolfgang & Findeisen, Sebastian & Woessner, Nicole, 2017. "German Robots – The Impact of Industrial Robots on Workers," CEPR Discussion Papers 12306, C.E.P.R. Discussion Papers.
    13. Carol Corrado & Jonathan Haskel & Cecilia Jona-Lasinio, 2021. "Artificial intelligence and productivity: an intangible assets approach," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 435-458.
    14. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1.
    15. Mirko Draca & Raffaella Sadun & John Van Reenen, 2006. "Productivity and ICT: A Review of the Evidence," CEP Discussion Papers dp0749, Centre for Economic Performance, LSE.
    16. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    17. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    18. repec:adr:anecst:y:2005:i:79-80:p:20 is not listed on IDEAS
    19. Manav Raj & Robert Seamans, 2018. "Artificial Intelligence, Labor, Productivity, and the Need for Firm-Level Data," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 553-565, National Bureau of Economic Research, Inc.
    20. Anastassia Fedyk & James Hodson & Natalya Khimich & Tatiana Fedyk, 2022. "Is artificial intelligence improving the audit process?," Review of Accounting Studies, Springer, vol. 27(3), pages 938-985, September.
    21. Timothy F. Bresnahan & Erik Brynjolfsson & Lorin M. Hitt, 2002. "Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 339-376.
    22. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    23. Lee, Yong Suk & Kim, Taekyun & Choi, Sukwoong & Kim, Wonjoon, 2022. "When does AI pay off? AI-adoption intensity, complementary investments, and R&D strategy," Technovation, Elsevier, vol. 118(C).
    24. Amit Gandhi & Salvador Navarro & David A. Rivers, 2020. "On the Identification of Gross Output Production Functions," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 2973-3016.
    25. Edward Felten & Manav Raj & Robert Seamans, 2021. "Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses," Strategic Management Journal, Wiley Blackwell, vol. 42(12), pages 2195-2217, December.
    26. Kevin J. Stiroh, 2005. "Reassessing the Impact of IT in the Production Function: A Meta-Analysis and Sensitivity Tests," Annals of Economics and Statistics, GENES, issue 79-80, pages 529-561.
    27. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    28. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    29. Mark Doms & Eric J. Bartelsman, 2000. "Understanding Productivity: Lessons from Longitudinal Microdata," Journal of Economic Literature, American Economic Association, vol. 38(3), pages 569-594, September.
    30. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    31. William D. Nordhaus, 2021. "Are We Approaching an Economic Singularity? Information Technology and the Future of Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 299-332, January.
    32. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2020. "AI and Jobs: Evidence from Online Vacancies," NBER Working Papers 28257, National Bureau of Economic Research, Inc.
    33. Erik Brynjolfsson & Lorin M. Hitt, 2003. "Computing Productivity: Firm-Level Evidence," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 793-808, November.
    34. Marguerita Lane & Anne Saint-Martin, 2021. "The impact of Artificial Intelligence on the labour market: What do we know so far?," OECD Social, Employment and Migration Working Papers 256, OECD Publishing.
    35. Fred Gault (ed.), 2013. "Handbook of Innovation Indicators and Measurement," Books, Edward Elgar Publishing, number 14427.
    36. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2017. "Revisiting the risk of automation," Economics Letters, Elsevier, vol. 159(C), pages 157-160.
    37. Ariel K. H. Lui & Maggie C. M. Lee & Eric W. T. Ngai, 2022. "Impact of artificial intelligence investment on firm value," Annals of Operations Research, Springer, vol. 308(1), pages 373-388, January.
    38. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    39. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    40. Rammer, Christian & Fernández, Gastón P. & Czarnitzki, Dirk, 2022. "Artificial intelligence and industrial innovation: Evidence from German firm-level data," Research Policy, Elsevier, vol. 51(7).
    41. Robert J. Gordon, 2018. "Why Has Economic Growth Slowed When Innovation Appears to be Accelerating?," NBER Working Papers 24554, National Bureau of Economic Research, Inc.
    42. Yang, Chih-Hai, 2022. "How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan," Research Policy, Elsevier, vol. 51(6).
    43. Prasanna Tambe & Lorin Hitt & Daniel Rock & Erik Brynjolfsson, 2020. "Digital Capital and Superstar Firms," NBER Working Papers 28285, National Bureau of Economic Research, Inc.
    44. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 23-57, National Bureau of Economic Research, Inc.
    45. Ghasemaghaei, Maryam & Calic, Goran, 2019. "Does big data enhance firm innovation competency? The mediating role of data-driven insights," Journal of Business Research, Elsevier, vol. 104(C), pages 69-84.
    46. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    47. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    48. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    49. Thomas Niebel & Fabienne Rasel & Steffen Viete, 2019. "BIG data – BIG gains? Understanding the link between big data analytics and innovation," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(3), pages 296-316, April.
    50. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, July.
    51. Gordon, Robert J., 2018. "Why Has Economic Growth Slowed When Innovation Appears To Be Accelerating?," CEPR Discussion Papers 13039, C.E.P.R. Discussion Papers.
    52. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    53. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy, 2021. "The impact of artificial intelligence on labor productivity," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 1-25, March.
    54. Robert J. Gordon, 2014. "The Demise of U.S. Economic Growth: Restatement, Rebuttal, and Reflections," NBER Working Papers 19895, National Bureau of Economic Research, Inc.
    55. Dauth, Wolfgang & Findeisen, Sebastian & Südekum, Jens & Wößner, Nicole, 2017. "German robots - the impact of industrial robots on workers," IAB-Discussion Paper 201730, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    56. Giuditta De Prato & Montserrat Lopez Cobo & Sofia Samoili & Riccardo Righi & Miguel Vazquez Prada Baillet & Melisande Cardona, 2019. "The AI Techno-Economic Segment Analysis," JRC Research Reports JRC118071, Joint Research Centre.
    57. ZELLNER, Arnold & KMENTA, Jan & DREZE, Jacques H., 1966. "Specification and estimation of Cobb-Douglas production function models," LIDAM Reprints CORE 12, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    58. Chatterjee, Sheshadri & Rana, Nripendra P. & Dwivedi, Yogesh K. & Baabdullah, Abdullah M., 2021. "Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).
    2. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Nils Grashof & Alexander Kopka, 2023. "Widening or closing the gap? The relationship between artificial intelligence, firm-level productivity and regional clusters," Bremen Papers on Economics & Innovation 2304, University of Bremen, Faculty of Business Studies and Economics.
    4. Damioli, G. & Van Roy, V. & Vertesy, D. & Vivarelli, M., 2021. "May AI revolution be labour-friendly? Some micro evidence from the supply side," GLO Discussion Paper Series 823, Global Labor Organization (GLO).
    5. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).
    6. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2021. "Will the AI revolution be labour-friendly? Some micro evidence from the supply side," MERIT Working Papers 2021-016, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    7. Gries, Thomas & Naude, Wim, 2018. "Artificial intelligence, jobs, inequality and productivity: Does aggregate demand matter?," MERIT Working Papers 2018-047, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    8. Zhai, Shaoxuan & Liu, Zhenpeng, 2023. "Artificial intelligence technology innovation and firm productivity: Evidence from China," Finance Research Letters, Elsevier, vol. 58(PB).
    9. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2021. "Detecting the labour-friendly nature of AI product innovation," DISCE - Quaderni del Dipartimento di Politica Economica dipe0017, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    10. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    12. Van Roy, Vincent & Vertesy, Daniel & Damioli, Giacomo, 2019. "AI and Robotics Innovation: a Sectoral and Geographical Mapping using Patent Data," GLO Discussion Paper Series 433, Global Labor Organization (GLO).
    13. Stefan Schweikl & Robert Obermaier, 2020. "Lessons from three decades of IT productivity research: towards a better understanding of IT-induced productivity effects," Management Review Quarterly, Springer, vol. 70(4), pages 461-507, November.
    14. Cali,Massimiliano & Presidente,Giorgio, 2021. "Automation and Manufacturing Performance in a Developing Country," Policy Research Working Paper Series 9653, The World Bank.
    15. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy, 2021. "The impact of artificial intelligence on labor productivity," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 1-25, March.
    16. Cusolito,Ana Paula & Lederman,Daniel & Pena,Jorge O., 2020. "The Effects of Digital-Technology Adoption on Productivity and Factor Demand : Firm-level Evidence from Developing Countries," Policy Research Working Paper Series 9333, The World Bank.
    17. Fossen, Frank M. & Sorgner, Alina, 2019. "New Digital Technologies and Heterogeneous Employment and Wage Dynamics in the United States: Evidence from Individual-Level Data," IZA Discussion Papers 12242, Institute of Labor Economics (IZA).
    18. Xueyuan Gao & Hua Feng, 2023. "AI-Driven Productivity Gains: Artificial Intelligence and Firm Productivity," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    19. Nucci, Francesco & Puccioni, Chiara & Ricchi, Ottavio, 2023. "Digital technologies and productivity: A firm-level investigation," Economic Modelling, Elsevier, vol. 128(C).
    20. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.

    More about this item

    Keywords

    Artificial Intelligence; Innovation; Productivity; CIS data;
    All these keywords.

    JEL classification:

    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance
    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:211:y:2023:i:c:p:188-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.