IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.07031.html
   My bibliography  Save this paper

Large Language Models: An Applied Econometric Framework

Author

Listed:
  • Jens Ludwig
  • Sendhil Mullainathan
  • Ashesh Rambachan

Abstract

How can we use the novel capacities of large language models (LLMs) in empirical research? And how can we do so while accounting for their limitations, which are themselves only poorly understood? We develop an econometric framework to answer this question that distinguishes between two types of empirical tasks. Using LLMs for prediction problems (including hypothesis generation) is valid under one condition: no ``leakage'' between the LLM's training dataset and the researcher's sample. No leakage can be ensured by using open-source LLMs with documented training data and published weights. Using LLM outputs for estimation problems to automate the measurement of some economic concept (expressed either by some text or from human subjects) requires the researcher to collect at least some validation data: without such data, the errors of the LLM's automation cannot be assessed and accounted for. As long as these steps are taken, LLM outputs can be used in empirical research with the familiar econometric guarantees we desire. Using two illustrative applications to finance and political economy, we find that these requirements are stringent; when they are violated, the limitations of LLMs now result in unreliable empirical estimates. Our results suggest the excitement around the empirical uses of LLMs is warranted -- they allow researchers to effectively use even small amounts of language data for both prediction and estimation -- but only with these safeguards in place.

Suggested Citation

  • Jens Ludwig & Sendhil Mullainathan & Ashesh Rambachan, 2024. "Large Language Models: An Applied Econometric Framework," Papers 2412.07031, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2412.07031
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.07031
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    2. Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024. "Artificial intelligence and scientific discovery: a model of prioritized search," Research Policy, Elsevier, vol. 53(5).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    2. Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," Working Papers hal-03873919, HAL.
    3. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    4. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Fang Han, 2024. "An Introduction to Permutation Processes (version 0.5)," Papers 2407.09664, arXiv.org.
    6. Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
    7. Peter Z. Schochet, 2018. "Design-Based Estimators for Average Treatment Effects for Multi-Armed RCTs," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 568-593, October.
    8. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    9. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," DISCE - Quaderni del Dipartimento di Politica Economica dipe0038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    10. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    11. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    12. Rauf Ahmad & Per Johansson & Mårten Schultzberg, 2024. "Is Fisher inference inferior to Neyman inference for policy analysis?," Statistical Papers, Springer, vol. 65(6), pages 3425-3445, August.
    13. Jiafeng Chen, 2021. "Nonparametric Treatment Effect Identification in School Choice," Papers 2112.03872, arXiv.org, revised Oct 2023.
    14. Peter Z. Schochet, 2020. "Analyzing Grouped Administrative Data for RCTs Using Design-Based Methods," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 32-57, February.
    15. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    16. Joel A. Middleton, 2021. "Unifying Design-based Inference: On Bounding and Estimating the Variance of any Linear Estimator in any Experimental Design," Papers 2109.09220, arXiv.org.
    17. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    18. Anton Korinek & Donghyun Suh, 2024. "Scenarios for the Transition to AGI," NBER Working Papers 32255, National Bureau of Economic Research, Inc.
    19. Dmitry Arkhangelsky & Guido W. Imbens & Lihua Lei & Xiaoman Luo, 2021. "Design-Robust Two-Way-Fixed-Effects Regression For Panel Data," Papers 2107.13737, arXiv.org, revised Mar 2024.
    20. Hsieh, Chih-Sheng & Hsu, Yu-Chin & Ko, Stanley I.M. & Kovářík, Jaromír & Logan, Trevon D., 2024. "Non-representative sampled networks: Estimation of network structural properties by weighting," Journal of Econometrics, Elsevier, vol. 240(1).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.07031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.