IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1472.html
   My bibliography  Save this paper

Challenges of Trending Time Series Econometrics

Author

Abstract

We discuss some challenges presented by trending data in time series econometrics. To the empirical economist there is little guidance from theory about the source of trend behavior and even less guidance about practical formulations. Moreover, recent proximity theorems reveal that trends are more elusive to model empirically than stationary processes, with the upshot that optimal forecasts are also harder to estimate when the data involve trends. These limitations are implicitly acknowledged in much practical modeling and forecasting work, where adaptive methods are often used to help keep models on track as trends evolve. The paper discusses these broader issues and limitations of econometrics and o.ers some thoughts on new practical possibilities for data analysis in the absence of good theory models for trends. In particular, a new concept of coordinate cointegration is introduced and some new econometric methodology is suggested for analyzing trends and comovement and for producing forecasts in a general way that is agnostic about the specific nature of the trend process. Some simulation exercises are conducted and some long historical series on prices and yields on long securities are used to illustrate the methods.

Suggested Citation

  • Peter C.B. Phillips, 2004. "Challenges of Trending Time Series Econometrics," Cowles Foundation Discussion Papers 1472, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1472
    Note: CFP 1151.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d14/d1472.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marmol, Francesc, 1996. "Nonsense Regressions between Integrated Processes of Different Orders," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 525-536, August.
    2. Dean Corbae & Sam Ouliaris & Peter C. B. Phillips, 2002. "Band Spectral Regression with Trending Data," Econometrica, Econometric Society, vol. 70(3), pages 1067-1109, May.
    3. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    4. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    5. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    6. Peter C.B. Phillips, 1999. "Discrete Fourier Transforms of Fractional Processes," Cowles Foundation Discussion Papers 1243, Cowles Foundation for Research in Economics, Yale University.
    7. Francesc Marmol, 1995. "SPURIOUS REGRESSIONS BETWEEN I(d) PROCESSES," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(3), pages 313-321, May.
    8. repec:cup:etheor:v:11:y:1995:i:4:p:736-49 is not listed on IDEAS
    9. Phillips, Peter C. B., 2002. "New unit root asymptotics in the presence of deterministic trends," Journal of Econometrics, Elsevier, vol. 111(2), pages 323-353, December.
    10. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    11. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    12. Shimotsu, Katsumi & Phillips, Peter C B, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 8838, University of Essex, Department of Economics.
    13. Werner Ploberger & Peter C. B. Phillips, 2003. "Empirical Limits for Time Series Econometric Models," Econometrica, Econometric Society, vol. 71(2), pages 627-673, March.
    14. Marmol, Francesc, 1998. "Spurious regression theory with nonstationary fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 84(2), pages 233-250, June.
    15. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    16. Shiller, Robert J & Siegel, Jeremy J, 1977. "The Gibson Paradox and Historical Movements in Real Interest Rates," Journal of Political Economy, University of Chicago Press, vol. 85(5), pages 891-907, October.
    17. Bai, Jushan, 1998. "A Note On Spurious Break," Econometric Theory, Cambridge University Press, vol. 14(5), pages 663-669, October.
    18. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    19. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    20. Tsay, Wen-Jen & Chung, Ching-Fan, 2000. "The spurious regression of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 96(1), pages 155-182, May.
    21. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    22. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    23. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    24. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(4), pages 736-749, August.
    25. Katsumi Shimotsu & Peter C.B. Phillips, 2000. "Local Whittle Estimation in Nonstationary and Unit Root Cases," Cowles Foundation Discussion Papers 1266, Cowles Foundation for Research in Economics, Yale University, revised Sep 2003.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    2. D. Ventosa-Santaulària, 2009. "Spurious Regression," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-27, August.
    3. Peter C. B. Phillips & Xiaohu Wang & Yonghui Zhang, 2019. "HAR Testing for Spurious Regression in Trend," Econometrics, MDPI, vol. 7(4), pages 1-28, December.
    4. Noriega Antonio E. & Ventosa-Santaulària Daniel, 2006. "Spurious Regression and Econometric Trends," Working Papers 2006-05, Banco de México.
    5. Antonio E. Noriega & Daniel Ventosa‐Santaulària, 2007. "Spurious Regression and Trending Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(3), pages 439-444, June.
    6. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    7. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    8. Noriega Antonio E. & Ventosa-Santaulària Daniel, 2011. "A Simple Test for Spurious Regressions," Working Papers 2011-05, Banco de México.
    9. Peter C.B. Phillips & Zhipeng Liao, 2012. "Series Estimation of Stochastic Processes: Recent Developments and Econometric Applications," Cowles Foundation Discussion Papers 1871, Cowles Foundation for Research in Economics, Yale University.
    10. Stewart, Chris, 2006. "Spurious correlation of I(0) regressors in models with an I(1) dependent variable," Economics Letters, Elsevier, vol. 91(2), pages 184-189, May.
    11. Chris Stewart, 2011. "A note on spurious significance in regressions involving I(0) and I(1) variables," Empirical Economics, Springer, vol. 41(3), pages 565-571, December.
    12. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    13. Zhang, Lingxiang, 2013. "Partial unit root and linear spurious regression: A Monte Carlo simulation study," Economics Letters, Elsevier, vol. 118(1), pages 189-191.
    14. Kruse Robinson & Ventosa-Santaulària Daniel & Noriega Antonio E., 2017. "Changes in persistence, spurious regressions and the Fisher hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-28, June.
    15. Mármol, Francesc, 1999. "How spurious features arise in case of fractional cointegration," DES - Working Papers. Statistics and Econometrics. WS 6349, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Chi-Young Choi & Ling Hu & Masao Ogaki, 2005. "Structural Spurious Regressions and A Hausman-type Cointegration Test," RCER Working Papers 517, University of Rochester - Center for Economic Research (RCER).
    17. Goldberg, Michael D. & Frydman, Roman, 1996. "Empirical exchange rate models and shifts in the co-integrating vector," Structural Change and Economic Dynamics, Elsevier, vol. 7(1), pages 55-78, March.
    18. Österholm, Pär, 2003. "Testing for Cointegration in Misspecified Systems –A Monte Carlo Study of Size Distortions," Working Paper Series 2003:21, Uppsala University, Department of Economics.
    19. Masao Ogaki & Ling Hu & Chi-Young Choi, 2004. "A Spurious Regression Approach to Estimating Structural Parameters," Working Papers 04-01, Ohio State University, Department of Economics.
    20. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.

    More about this item

    Keywords

    Coordinate instrumental variables; coordinate reduced rank regression; coordinate trend functions; limitations of econometrics; nonstationarity; trend;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.