IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/1903.html
   My bibliography  Save this paper

A Primer On Bootstrap Testing Of Hypotheses In Time Series Models: With An Application To Double Autoregressive Models

Author

Listed:
  • Giuseppe Cavaliere

    (Department of Economics, University of Bologna, Italy)

  • Anders Rahbek

    (Department of Economics, University of Copenhagen, Denmark)

Abstract

In this paper we discuss the general application of the bootstrap as a tool for statistical inference in econometric time series models. We do this by considering the implementation of bootstrap inference in the class of double-autoregressive [DAR] models discussed in Ling (2004). DAR models are particularly interesting to illustrate implementation of the bootstrap to time series: first, standard asymptotic inference is usually difficult to implement due to the presence of nuisance parameters under the null hypothesis; second, inference involves testing whether one or more parameters are on the boundary of the parameter space; third, under the alternative hypothesis, fourth or even second order moments may not exist. In most of these cases, the bootstrap is not considered an appropriate tool for inference. Conversely, and taking testing (non-) stationarity to illustrate, we show that although a standard bootstrap based on unrestricted parameter estimation is invalid, a correct implementation of a bootstrap based on restricted parameter estimation (restricted bootstrap) is first-order valid; that is, it is able to replicate, under the null hypothesis, the correct limiting null distribution. Importantly, we also show that the behaviour of this bootstrap under the alternative hypothesis may be different because of possible lack of finite second-order moments of the bootstrap innovations. This features makes - for some parameter configurations - the restricted bootstrap unable to replicate the null asymptotic distribution when the null is false. We show that this drawback can be fixed by using a new 'hybrid' bootstrap, where the parameter estimates used to construct the bootstrap data are obtained with the null imposed, while the bootstrap innovations are sampled with replacement from the unrestricted residuals. We show that this bootstrap, novel in this framework, mimics the correct asymptotic null distribution, irrespetively of the null to be true or false. Throughout the paper, we use a number of examples from the bootstrap time series literature to illustrate the importance of properly defining and analyzing the bootstrap generating process and associated bootstrap statistics.

Suggested Citation

  • Giuseppe Cavaliere & Anders Rahbek, 2019. "A Primer On Bootstrap Testing Of Hypotheses In Time Series Models: With An Application To Double Autoregressive Models," Discussion Papers 19-03, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:1903
    as

    Download full text from publisher

    File URL: https://www.economics.ku.dk/research/publications/wp/dp_2019/1903.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    2. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    3. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    4. Anders Rygh Swensen, 2003. "Bootstrapping unit root tests for integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 99-126, January.
    5. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2014. "Bootstrap Determination of the Co-Integration Rank in Heteroskedastic VAR Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 606-650, August.
    6. Gredenhoff, Mikael & Jacobson, Tor, 2001. "Bootstrap Testing Linear Restrictions on Cointegrating Vectors," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 63-72, January.
    7. Swensen, Anders Rygh, 2003. "A Note On The Power Of Bootstrap Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(1), pages 32-48, February.
    8. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2015. "Bootstrap Testing of Hypotheses on Co‐Integration Relations in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 83, pages 813-831, March.
    9. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    10. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    11. Kristensen, Dennis & Rahbek, Anders, 2013. "Testing And Inference In Nonlinear Cointegrating Vector Error Correction Models," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1238-1288, December.
    12. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    13. Omtzigt Pieter & Fachin Stefano, 2002. "Bootstrapping and Bartlett corrections in the cointegrated VAR model," Economics and Quantitative Methods qf0212, Department of Economics, University of Insubria.
    14. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    15. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    16. Claudia Klüppelberg & Ross A. Maller & Mark van de Vyver & Derick Wee, 2002. "Testing for reduction to random walk in autoregressive conditional heteroskedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 387-416, June.
    17. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2008. "Bootstrap Unit Root Tests For Time Series With Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 24(1), pages 43-71, February.
    18. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Cointegration Rank Testing Under Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1719-1760, December.
    19. Anders Rygh Swensen, 2006. "Bootstrap Algorithms for Testing and Determining the Cointegration Rank in VAR Models -super-1," Econometrica, Econometric Society, vol. 74(6), pages 1699-1714, November.
    20. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    21. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
    22. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    23. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    24. Donald W. K. Andrews & Moshe Buchinsky, 2000. "A Three-Step Method for Choosing the Number of Bootstrap Repetitions," Econometrica, Econometric Society, vol. 68(1), pages 23-52, January.
    25. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    26. Stefano Fachin, 2000. "Bootstrap and Asymptotic Tests of Long‐run Relationships in Cointegrated Systems," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 62(4), pages 543-551, September.
    27. Shiqing Ling, 2004. "Estimation and testing stationarity for double‐autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78, February.
    28. Theis Lange & Anders Rahbek & Søren Tolver Jensen, 2011. "Estimation and Asymptotic Inference in the AR-ARCH Model," Econometric Reviews, Taylor & Francis Journals, vol. 30(2), pages 129-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    2. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    3. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    4. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    5. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    6. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    7. Guiseppe Cavaliere & Anders Rahbek & A.M.Robert Taylor, 2010. "Bootstrap Sequential Determination of the Co-integration Rank in VAR Models," CREATES Research Papers 2010-07, Department of Economics and Business Economics, Aarhus University.
    8. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    9. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    10. Jentsch, Carsten & Paparoditis, Efstathios & Politis, Dimitris N., 2014. "Block Bootstrap Theory for Multivariate Integrated and Cointegrated Processes," Working Papers 14-18, University of Mannheim, Department of Economics.
    11. Canepa Alessandra, 2022. "Small Sample Adjustment for Hypotheses Testing on Cointegrating Vectors," Journal of Time Series Econometrics, De Gruyter, vol. 14(1), pages 51-85, January.
    12. Martin C. Arnold & Thilo Reinschlussel, 2024. "Bootstrap Adaptive Lasso Solution Path Unit Root Tests," Papers 2409.07859, arXiv.org.
    13. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    14. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    15. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, September.
    16. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    17. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    18. Parker, Cameron & Paparoditis, Efstathios & Politis, Dimitris N., 2006. "Unit root testing via the stationary bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 601-638, August.
    19. Gourieroux, Christian & Jasiak, Joann, 2019. "Robust analysis of the martingale hypothesis," Econometrics and Statistics, Elsevier, vol. 9(C), pages 17-41.
    20. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.

    More about this item

    Keywords

    Bootstrap; Hypothesis testing; Double-Autoregressive models; Parameter on the boundary; Infinite Variance;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:1903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/okokudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.