IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1035.html
   My bibliography  Save this paper

The Power Of Bootstrap And Asymptotic Tests

Author

Listed:
  • James G. MacKinnon

    (Queen's University)

  • Russell Davidson

    (McGill University)

Abstract

We introduce the concept of the bootstrap discrepancy, which measures the difference in rejection probabilities between a bootstrap test based on a given test statistic and that of a (usually infeasible) test based on the true distribution of the statistic. We show that the bootstrap discrepancyis of the same order of magnitude under the null hypothesis and under non-null processes described by a Pitman drift. However, complications arise in the measurement of power. If the test statistic is not an exact pivot, critical values depend on which data-generating process (DGP) is used to determine the distribution under the null hypothesis. We propose as the proper choice the DGP which minimizes the bootstrap discrepancy. We also show that, under an asymptotic independence condition, the power of both bootstrap and asymptotic tests can be estimated cheaply by simulation. The theory of the paper and the proposed simulation method are illustrated by Monte Carlo experiments using the logit model.

Suggested Citation

  • James G. MacKinnon & Russell Davidson, 2004. "The Power Of Bootstrap And Asymptotic Tests," Working Paper 1035, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1035
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1035.pdf
    File Function: First version 2004
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Horowitz, Joel L., 1994. "Bootstrap-based critical values for the information matrix test," Journal of Econometrics, Elsevier, vol. 61(2), pages 395-411, April.
    2. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589819, January.
    3. Davidson, Russell & MacKinnon, James G, 1987. "Implicit Alternatives and the Local Power of Test Statistics," Econometrica, Econometric Society, vol. 55(6), pages 1305-1329, November.
    4. Davidson, Russell & MacKinnon, James G., 1984. "Convenient specification tests for logit and probit models," Journal of Econometrics, Elsevier, vol. 25(3), pages 241-262, July.
    5. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    6. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    7. Rudolf Beran, 1997. "Diagnosing Bootstrap Success," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(1), pages 1-24, March.
    8. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    9. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589833, January.
    10. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    11. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    12. Horowitz, Joel L. & Savin, N. E., 2000. "Empirically relevant critical values for hypothesis tests: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 95(2), pages 375-389, April.
    13. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589826, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamel Jouini, 2010. "Bootstrap methods for single structural change tests: power versus corrected size and empirical illustration," Statistical Papers, Springer, vol. 51(1), pages 85-109, January.
    2. Jamel Jouini, 2006. "Bootstrap Tests in Bivariate VAR Process with Single Structural Change : Power versus Corrected Size and Empirical Illustration," Working Papers halshs-00410759, HAL.
    3. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    4. Zhenlin Yang, 2013. "LM Tests of Spatial Dependence Based on Bootstrap Critical Values," Working Papers 03-2013, Singapore Management University, School of Economics.
    5. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    6. Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Yang, Zhenlin, 2015. "LM tests of spatial dependence based on bootstrap critical values," Journal of Econometrics, Elsevier, vol. 185(1), pages 33-59.
    8. Ou Bianling & Long Zhihe & Li Wenqian, 2019. "Bootstrap LM Tests for Spatial Dependence in Panel Data Models with Fixed Effects," Journal of Systems Science and Information, De Gruyter, vol. 7(4), pages 330-343, August.
    9. Jamie Emerson & Chihwa Kao, 2005. "Bootstrapping and hypothesis testing in non-stationary panel data," Applied Economics Letters, Taylor & Francis Journals, vol. 12(5), pages 313-318.
    10. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    11. Christian de Peretti, 2003. "Bilateral Bootstrap Tests for Long Memory: An Application to the Silver Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 187-212, October.
    12. Bergström, Pål, 1999. "Bootstrap Methods and Applications in Econometrics - A Brief Survey," Working Paper Series 1999:2, Uppsala University, Department of Economics.
    13. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
    14. Timothy Moran, 2005. "Bootstrapping the LIS: Statistical Inference and Patterns of Inequality in the Global North," LIS Working papers 378, LIS Cross-National Data Center in Luxembourg.
    15. Timothy Patrick Moran, 2006. "Statistical Inference for Measures of Inequality With a Cross-National Bootstrap Application," Sociological Methods & Research, , vol. 34(3), pages 296-333, February.
    16. van Giersbergen, Noud P. A. & Kiviet, Jan F., 2002. "How to implement the bootstrap in static or stable dynamic regression models: test statistic versus confidence region approach," Journal of Econometrics, Elsevier, vol. 108(1), pages 133-156, May.
    17. Davidson, Russell & MacKinnon, James G., 1996. "The Power of Bootstrap Tests," Queen's Institute for Economic Research Discussion Papers 273372, Queen's University - Department of Economics.
    18. repec:ebl:ecbull:v:30:y:2010:i:1:p:55-66 is not listed on IDEAS
    19. van den Berg, Gerard J. & van Vuuren, Aico, 2010. "The effect of search frictions on wages," Labour Economics, Elsevier, vol. 17(6), pages 875-885, December.
    20. Emmanuel Flachaire, 2000. "Les méthodes du bootstrap dans les modèles de régression," Économie et Prévision, Programme National Persée, vol. 142(1), pages 183-194.
    21. Alston, Lee J. & Ferrie, Joseph P., 2005. "Time on the Ladder: Career Mobility in Agriculture, 1890–1938," The Journal of Economic History, Cambridge University Press, vol. 65(4), pages 1058-1081, December.

    More about this item

    Keywords

    bootstrap test; bootstrap discrepancy; Pitman drift; drifting DGP; Monte Carlo; test power;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.