IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.01023.html
   My bibliography  Save this paper

Distilling interpretable causal trees from causal forests

Author

Listed:
  • Patrick Rehill

Abstract

Machine learning methods for estimating treatment effect heterogeneity promise greater flexibility than existing methods that test a few pre-specified hypotheses. However, one problem these methods can have is that it can be challenging to extract insights from complicated machine learning models. A high-dimensional distribution of conditional average treatment effects may give accurate, individual-level estimates, but it can be hard to understand the underlying patterns; hard to know what the implications of the analysis are. This paper proposes the Distilled Causal Tree, a method for distilling a single, interpretable causal tree from a causal forest. This compares well to existing methods of extracting a single tree, particularly in noisy data or high-dimensional data where there are many correlated features. Here it even outperforms the base causal forest in most simulations. Its estimates are doubly robust and asymptotically normal just as those of the causal forest are.

Suggested Citation

  • Patrick Rehill, 2024. "Distilling interpretable causal trees from causal forests," Papers 2408.01023, arXiv.org.
  • Handle: RePEc:arx:papers:2408.01023
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.01023
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    2. Amann, Erwin & Rzepka, Sylvi, 2023. "The effect of goal-setting prompts in a blended learning environment—evidence from a field experiment," Economics of Education Review, Elsevier, vol. 92(C).
    3. Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Rehill, 2024. "How do applied researchers use the Causal Forest? A methodological review of a method," Papers 2404.13356, arXiv.org, revised Dec 2024.
    2. Ang Yu & Felix Elwert, 2023. "Nonparametric Causal Decomposition of Group Disparities," Papers 2306.16591, arXiv.org, revised Dec 2024.
    3. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    4. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    5. Taiyo Fukai & Keisuke Kawata & Mizuki Komura & Takahiro Toriyabe, 2024. "Gender gap in the ask salaries: Evidence from larger administrative data," Discussion Paper Series 284, School of Economics, Kwansei Gakuin University.
    6. Fernandez Martinez, Roberto & Lostado Lorza, Ruben & Santos Delgado, Ana Alexandra & Piedra, Nelson, 2021. "Use of classification trees and rule-based models to optimize the funding assignment to research projects: A case study of UTPL," Journal of Informetrics, Elsevier, vol. 15(1).
    7. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    8. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    9. Adam Baybutt & Manu Navjeevan, 2023. "Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls," Papers 2301.06283, arXiv.org.
    10. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    11. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    12. Patrick Rehill & Nicholas Biddle, 2024. "Heterogeneous treatment effect estimation with high-dimensional data in public policy evaluation -- an application to the conditioning of cash transfers in Morocco using causal machine learning," Papers 2401.07075, arXiv.org, revised Mar 2024.
    13. Hajko, Vladimír, 2017. "The failure of Energy-Economy Nexus: A meta-analysis of 104 studies," Energy, Elsevier, vol. 125(C), pages 771-787.
    14. Heejun Shin & Joseph Antonelli, 2023. "Improved inference for doubly robust estimators of heterogeneous treatment effects," Biometrics, The International Biometric Society, vol. 79(4), pages 3140-3152, December.
    15. Goller, Daniel & Diem, Andrea & Wolter, Stefan C., 2023. "Sitting next to a dropout: Academic success of students with more educated peers," Economics of Education Review, Elsevier, vol. 93(C).
    16. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    17. Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.
    18. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    19. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    20. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.01023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.