Distilling interpretable causal trees from causal forests
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014.
"evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
- Thomas Grubinger & Achim Zeileis & Karl-Peter Pfeiffer, 2011. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Working Papers 2011-20, Faculty of Economics and Statistics, Universität Innsbruck.
- Amann, Erwin & Rzepka, Sylvi, 2023. "The effect of goal-setting prompts in a blended learning environment—evidence from a field experiment," Economics of Education Review, Elsevier, vol. 92(C).
- Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patrick Rehill, 2024. "How do applied researchers use the Causal Forest? A methodological review of a method," Papers 2404.13356, arXiv.org, revised Dec 2024.
- Ang Yu & Felix Elwert, 2023. "Nonparametric Causal Decomposition of Group Disparities," Papers 2306.16591, arXiv.org, revised Dec 2024.
- Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
- Daniel Goller, 2023.
"Analysing a built-in advantage in asymmetric darts contests using causal machine learning,"
Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
- Daniel Goller, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Papers 2008.07165, arXiv.org.
- Goller, Daniel, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Economics Working Paper Series 2013, University of St. Gallen, School of Economics and Political Science.
- Taiyo Fukai & Keisuke Kawata & Mizuki Komura & Takahiro Toriyabe, 2024. "Gender gap in the ask salaries: Evidence from larger administrative data," Discussion Paper Series 284, School of Economics, Kwansei Gakuin University.
- Fernandez Martinez, Roberto & Lostado Lorza, Ruben & Santos Delgado, Ana Alexandra & Piedra, Nelson, 2021. "Use of classification trees and rule-based models to optimize the funding assignment to research projects: A case study of UTPL," Journal of Informetrics, Elsevier, vol. 15(1).
- Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Adam Baybutt & Manu Navjeevan, 2023. "Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls," Papers 2301.06283, arXiv.org.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021.
"Long Story Short: Omitted Variable Bias in Causal Machine Learning,"
Papers
2112.13398, arXiv.org, revised May 2024.
- Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2022. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," NBER Working Papers 30302, National Bureau of Economic Research, Inc.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023.
"Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium,"
Labour Economics, Elsevier, vol. 80(C).
- Bart Cockx & Michael Lechner & Joost Bollens, 2019. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Papers 1912.12864, arXiv.org, revised Dec 2022.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," ROA Research Memorandum 006, Maastricht University, Research Centre for Education and the Labour Market (ROA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority of Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," CESifo Working Paper Series 8297, CESifo.
- Lechner, Michael & Cockx, Bart & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," CEPR Discussion Papers 14270, C.E.P.R. Discussion Papers.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Economics Working Paper Series 2001, University of St. Gallen, School of Economics and Political Science.
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Research Memorandum 015, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cockx, Bart & Lechner, Michael & Bollens, Joost, 2019. "Priority to Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium," IZA Discussion Papers 12875, Institute of Labor Economics (IZA).
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 20/998, Ghent University, Faculty of Economics and Business Administration.
- Bart Cockx & Michael Lechner & Joost Bollens, 2020. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," LIDAM Discussion Papers IRES 2020016, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Patrick Rehill & Nicholas Biddle, 2024. "Heterogeneous treatment effect estimation with high-dimensional data in public policy evaluation -- an application to the conditioning of cash transfers in Morocco using causal machine learning," Papers 2401.07075, arXiv.org, revised Mar 2024.
- Hajko, Vladimír, 2017. "The failure of Energy-Economy Nexus: A meta-analysis of 104 studies," Energy, Elsevier, vol. 125(C), pages 771-787.
- Heejun Shin & Joseph Antonelli, 2023. "Improved inference for doubly robust estimators of heterogeneous treatment effects," Biometrics, The International Biometric Society, vol. 79(4), pages 3140-3152, December.
- Goller, Daniel & Diem, Andrea & Wolter, Stefan C., 2023.
"Sitting next to a dropout: Academic success of students with more educated peers,"
Economics of Education Review, Elsevier, vol. 93(C).
- Daniel Goller & Andrea Diem & Stefan C. Wolter, 2022. "Sitting Next to a Dropout - Academic Success of Students with More Educated Peers," CESifo Working Paper Series 9812, CESifo.
- Goller, Daniel & Diem, Andrea & Wolter, Stefan C., 2022. "Sitting Next to a Dropout: Academic Success of Students with More Educated Peers," IZA Discussion Papers 15378, Institute of Labor Economics (IZA).
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.
- Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
- Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022.
"Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets,"
Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
- Martin Huber & Jonas Meier & Hannes Wallimann, 2021. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Papers 2105.01426, arXiv.org, revised Jun 2022.
- Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-09-02 (Big Data)
- NEP-CMP-2024-09-02 (Computational Economics)
- NEP-ECM-2024-09-02 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.01023. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.