IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v66y2014i2p413-439.html
   My bibliography  Save this article

Testing linearity against threshold effects: uniform inference in quantile regression

Author

Listed:
  • Antonio Galvao
  • Kengo Kato
  • Gabriel Montes-Rojas
  • Jose Olmo

Abstract

This paper develops a uniform test of linearity against threshold effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the limiting null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values. The proposed simulation method makes the test easy to implement. Monte Carlo experiments show that the proposed test has good size and reasonable power against non-linear threshold models. Copyright The Institute of Statistical Mathematics, Tokyo 2014

Suggested Citation

  • Antonio Galvao & Kengo Kato & Gabriel Montes-Rojas & Jose Olmo, 2014. "Testing linearity against threshold effects: uniform inference in quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 413-439, April.
  • Handle: RePEc:spr:aistmt:v:66:y:2014:i:2:p:413-439
    DOI: 10.1007/s10463-013-0418-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0418-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0418-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horowitz J.L. & Spokoiny V.G., 2002. "An Adaptive, Rate-Optimal Test of Linearity for Median Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 822-835, September.
    2. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    3. Su, Liangjun & Xiao, Zhijie, 2008. "Testing for parameter stability in quantile regression models," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2768-2775, November.
    4. Komunjer, Ivana & Vuong, Quang, 2010. "Semiparametric Efficiency Bound In Time-Series Models For Conditional Quantiles," Econometric Theory, Cambridge University Press, vol. 26(2), pages 383-405, April.
    5. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    6. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    7. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    8. He X. & Zhu L-X., 2003. "A Lack-of-Fit Test for Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1013-1022, January.
    9. repec:hal:journl:peer-00732534 is not listed on IDEAS
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Yuzhi Cai, 2010. "Forecasting for quantile self-exciting threshold autoregressive time series models," Biometrika, Biometrika Trust, vol. 97(1), pages 199-208.
    12. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    13. Carrasco, Marine, 2002. "Misspecified Structural Change, Threshold, and Markov-switching models," Journal of Econometrics, Elsevier, vol. 109(2), pages 239-273, August.
    14. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    15. Zheng, John Xu, 1998. "A Consistent Nonparametric Test Of Parametric Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 123-138, February.
    16. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    17. Caner, Mehmet, 2002. "A Note On Least Absolute Deviation Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 18(3), pages 800-814, June.
    18. Lee, Sokbae & Seo, Myung Hwan & Shin, Youngki, 2011. "Testing for Threshold Effects in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 220-231.
    19. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    20. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    21. Nobel, Andrew & Dembo, Amir, 1993. "A note on uniform laws of averages for dependent processes," Statistics & Probability Letters, Elsevier, vol. 17(3), pages 169-172, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    2. Junho Lee & Ying Sun & Huixia Judy Wang, 2021. "Spatial cluster detection with threshold quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    3. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    4. Martins, Luis F., 2021. "The US debt–growth nexus along the business cycle," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    5. Chung-Ming Kuan & Christos Michalopoulos & Zhijie Xiao, 2017. "Quantile Regression on Quantile Ranges – A Threshold Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 99-119, January.
    6. Liwen Zhang & Huixia Judy Wang & Zhongyi Zhu, 2017. "Composite change point estimation for bent line quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 145-168, February.
    7. Sokbae (Simon) Lee & Hyunmin Park & Myung Hwan Seo & Youngki Shin, 2014. "A contribution to the Reinhart and Rogoff debate: not 90 percent but maybe 30 percent," CeMMAP working papers CWP39/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    9. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junho Lee & Ying Sun & Huixia Judy Wang, 2021. "Spatial cluster detection with threshold quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    2. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    3. Conde-Amboage, Mercedes & Sánchez-Sellero, César & González-Manteiga, Wenceslao, 2015. "A lack-of-fit test for quantile regression models with high-dimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 128-138.
    4. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    5. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    6. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    7. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    8. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    9. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    10. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    11. Escanciano, Juan Carlos & Velasco, Carlos, 2010. "Specification tests of parametric dynamic conditional quantiles," Journal of Econometrics, Elsevier, vol. 159(1), pages 209-221, November.
    12. Lanouar Charfeddine & Dominique Guegan, 2008. "Is it possible to discriminate between different switching regressions models? An empirical investigation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00368358, HAL.
    13. Lanouar Charfeddine & Dominique Guegan, 2008. "Is it possible to discriminate between different switching regressions models? An empirical investigation," Post-Print halshs-00368358, HAL.
    14. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    15. repec:hal:journl:peer-00732534 is not listed on IDEAS
    16. Ana Pérez-González & Tomás R. Cotos-Yáñez & Wenceslao González-Manteiga & Rosa M. Crujeiras-Casais, 2021. "Goodness-of-fit tests for quantile regression with missing responses," Statistical Papers, Springer, vol. 62(3), pages 1231-1264, June.
    17. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    18. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    19. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    20. Chung-Ming Kuan & Christos Michalopoulos & Zhijie Xiao, 2017. "Quantile Regression on Quantile Ranges – A Threshold Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 99-119, January.
    21. Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:66:y:2014:i:2:p:413-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.