IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v70y2002i5p2093-2095.html
   My bibliography  Save this article

Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation

Author

Listed:
  • Nicholas M. Kiefer

    (CAF, CDME and CLS, University of Aarhus, Denmark, and Cornell University, Ithaca, N.Y. U.S.A.)

  • Timothy J. Vogelsang

    (Cornell University, N.Y. U.S.A.)

Abstract

In this paper we analyze heteroskedasticity-autocorrelation (HAC) robust tests constructed using the Bartlett kernel without truncation. We show that while such an HAC estimator is not consistent, asymptotically valid testing is still possible. We show that tests using the Bartlett kernel without truncation are exactly equivalent to recent HAC robust tests proposed by Kiefer, Vogelsang and Bunzel (2000, Econometrica, 68, pp 695-714).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
  • Handle: RePEc:ecm:emetrp:v:70:y:2002:i:5:p:2093-2095
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karim M. Abadir & Paolo Paruolo, 1997. "Two Mixed Normal Densities from Cointegration Analysis," Econometrica, Econometric Society, vol. 65(3), pages 671-680, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim Abadir, 1999. "An introduction to hypergeometric functions for economists," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 287-330.
    2. Timothy J. Vogelsang, 2003. "Testing In Gmm Models Without Truncation," Advances in Econometrics, in: Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later, pages 199-233, Emerald Group Publishing Limited.
    3. Thiago Revil T. Ferreira, 2018. "Stock Market Cross-Sectional Skewness and Business Cycle Fluctuations," International Finance Discussion Papers 1223, Board of Governors of the Federal Reserve System (U.S.).
    4. Thiago Revil T. Ferreira, 2022. "Cross-Sectional Financial Conditions, Business Cycles and The Lending Channel," International Finance Discussion Papers 1335, Board of Governors of the Federal Reserve System (U.S.).
    5. Cubadda, Gianluca & Omtzigt, Pieter, 2005. "Small-sample improvements in the statistical analysis of seasonally cointegrated systems," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 333-348, April.
    6. Abadir, Karim M. & Luati, Alessandra & Paruolo, Paolo, 2023. "GARCH density and functional forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 470-483.
    7. Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2022. "Fast Inference for Quantile Regression with Tens of Millions of Observations," Papers 2209.14502, arXiv.org, revised Oct 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:70:y:2002:i:5:p:2093-2095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.