A Non-standard Empirical Likelihood for Time Series
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Nordman, Daniel J. & Bunzel, Helle & Lahiri, Soumendra N., 2013. "A Nonstandard Empirical Likelihood for Time Series," Staff General Research Papers Archive 37203, Iowa State University, Department of Economics.
References listed on IDEAS
- Zhang, Junjian, 2006. "Empirical likelihood for NA series," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 153-160, January.
- Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008.
"Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing,"
Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
- Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2006. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Cowles Foundation Discussion Papers 1545, Cowles Foundation for Research in Economics, Yale University.
- Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
- Lin, Lu & Zhang, Runchu, 2001. "Blockwise empirical Euclidean likelihood for weakly dependent processes," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 143-152, June.
- Francesco Bravo, 2009. "Blockwise generalized empirical likelihood inference for non-linear dynamic moment conditions models," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 208-231, July.
- Lobato I. N., 2001. "Testing That a Dependent Process Is Uncorrelated," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1066-1076, September.
- Daniel J. Nordman, 2009. "Tapered empirical likelihood for time series data in time and frequency domains," Biometrika, Biometrika Trust, vol. 96(1), pages 119-132.
- Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000.
"Simple Robust Testing of Regression Hypotheses,"
Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
- Kiefer, Nicholas M. & Bunzel, Helle & Vogelsang, Timothy & Vogelsang, Timothy & Bunzel, Helle, 2000. "Simple Robust Testing of Regression Hypotheses," Staff General Research Papers Archive 1832, Iowa State University, Department of Economics.
- Nicholas M. Kiefer & Timothy J. Vogelsang, 2002.
"Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation,"
Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
- Kiefer, Nicholas M., 2001. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using the Bartlett Kernel without Truncation," Working Papers 01-13, Cornell University, Center for Analytic Economics.
- Wu, Rongning & Cao, Jiguo, 2011. "Blockwise empirical likelihood for time series of counts," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 661-673, March.
- Bunzel H. & Kiefer N. M. & Vogelsang T. J., 2001.
"Simple Robust Testing of Hypotheses in Nonlinear Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1088-1096, September.
- Bunzel, Helle & Kiefer, Nicholas M. & Vogelsang, Timothy, 2001. "Simple Robust Testing of Hypothesis in Non-Linear Models," Staff General Research Papers Archive 5214, Iowa State University, Department of Economics.
- Politis, Dimitris N. & Romano, Joseph P., 1993. "On the sample variance of linear statistics derived from mixing sequences," Stochastic Processes and their Applications, Elsevier, vol. 45(1), pages 155-167, March.
- Francesco Bravo, 2005. "Blockwise empirical entropy tests for time series regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 185-210, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stelios Arvanitis & Thierry Post, 2024. "Stochastic Arbitrage Opportunities: Set Estimation and Statistical Testing," Mathematics, MDPI, vol. 12(4), pages 1-19, February.
- Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
- Arvanitis, Stelios & Post, Thierry & Potì, Valerio & Karabati, Selcuk, 2021. "Nonparametric tests for Optimal Predictive Ability," International Journal of Forecasting, Elsevier, vol. 37(2), pages 881-898.
- Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
- Xianyang Zhang & Xiaofeng Shao, 2016. "On the coverage bound problem of empirical likelihood methods for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 395-421, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016.
"The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers 06/14, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers CWP06/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series," Cambridge Working Papers in Economics 1452, Faculty of Economics, University of Cambridge.
- Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
- Yi-Ting Chen & Zhongjun Qu, 2015.
"M Tests with a New Normalization Matrix,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
- Zhongjun Qu & Yi-Ting Chen, 2010. "M Tests with a New Normalization Matrix," Boston University - Department of Economics - Working Papers Series WP2010-050, Boston University - Department of Economics.
- Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
- Zhang, Jingsi & Jiang, Wenxin & Shao, Xiaofeng, 2013. "Bayesian model selection based on parameter estimates from subsamples," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 979-986.
- Shin‐Kun Peng & Takatoshi Tabuchi, 2007.
"Spatial Competition in Variety and Number of Stores,"
Journal of Economics & Management Strategy, Wiley Blackwell, vol. 16(1), pages 227-250, March.
- Shin-Kun Peng & Takatoshi Tabuchi, 2005. "Spatial Competition in Variety and Number of Stores," CIRJE F-Series CIRJE-F-360, CIRJE, Faculty of Economics, University of Tokyo.
- Shin-Kun Peng & Takatoshi Tabuchi, 2006. "Spatial Competition in Variety and Number of Stores," IEAS Working Paper : academic research 06-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Lee, Wei-Ming & Kuan, Chung-Ming & Hsu, Yu-Chin, 2014.
"Testing over-identifying restrictions without consistent estimation of the asymptotic covariance matrix,"
Journal of Econometrics, Elsevier, vol. 181(2), pages 181-193.
- Wei-Ming Lee & Chung-Ming Kuan, 2006. "Testing Over-Identifying Restrictions without Consistent Estimation of the Asymptotic Covariance Matrix," IEAS Working Paper : academic research 06-A009, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Wei-Ming Lee & Chung-Ming Kuan & Yu-Chin Hsu, 2014. "Testing Over-Identifying Restrictions without Consistent Estimation of the Asymptotic Covariance Matrix," IEAS Working Paper : academic research 14-A001, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
- Casini, Alessandro & Perron, Pierre, 2024.
"Prewhitened long-run variance estimation robust to nonstationarity,"
Journal of Econometrics, Elsevier, vol. 242(1).
- Alessandro Casini & Pierre Perron, 2021. "Prewhitened Long-Run Variance Estimation Robust to Nonstationarity," Papers 2103.02235, arXiv.org, revised Aug 2024.
- Daniel Nordman, 2008. "An empirical likelihood method for spatial regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 351-363, November.
- Zhang, Xianyang & Shao, Xiaofeng, 2013. "On a general class of long run variance estimators," Economics Letters, Elsevier, vol. 120(3), pages 437-441.
- Sun, Yixiao & Phillips, Peter C.B. & Jin, Sainan, 2011.
"Power Maximization And Size Control In Heteroskedasticity And Autocorrelation Robust Tests With Exponentiated Kernels,"
Econometric Theory, Cambridge University Press, vol. 27(6), pages 1320-1368, December.
- Yixiao Sun & Peter C.B. Phillips & Sainan Jin, 2010. "Power Maximization and Size Control in Heteroskedasticity and Autocorrelation Robust Tests with Exponentiated Kernels," Cowles Foundation Discussion Papers 1749, Cowles Foundation for Research in Economics, Yale University.
- McElroy, Tucker S. & Politis, Dimitris N., 2014.
"Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
- McElroy, Tucker & Politis, Dimitris, 2013. "Spectral Density and Spectral Distribution Inference for Long Memory Time Series via Fixed-b Asymptotics," University of California at San Diego, Economics Working Paper Series qt6164c110, Department of Economics, UC San Diego.
- Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017.
"A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
- Min Seong Kim & Yixiao Sun & Jingjing Yang, 2015. "A Fixed-bandwidth View of the Pre-asymptotic Inference for Kernel Smoothing with Time Series Data," Working Papers 049, Toronto Metropolitan University, Department of Economics.
- Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2016. "A Fixed-bandwidth View of the Pre-asymptotic Inference for Kernel Smoothing with Time Series Data," University of California at San Diego, Economics Working Paper Series qt2240n3n5, Department of Economics, UC San Diego.
- Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
- Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
- McCulloch, J. Huston, 2016. "Moment Ratio estimation of autoregressive/unit root parameters and autocorrelation-consistent standard errors," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 712-733.
- Pötscher, Benedikt M. & Preinerstorfer, David, 2018.
"Controlling the size of autocorrelation robust tests,"
Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
- Pötscher, Benedikt M. & Preinerstorfer, David, 2016. "Controlling the Size of Autocorrelation Robust Tests," MPRA Paper 75657, University Library of Munich, Germany.
- McElroy, Tucker & Politis, Dimitris N., 2013.
"Distribution theory for the studentized mean for long, short, and negative memory time series,"
Journal of Econometrics, Elsevier, vol. 177(1), pages 60-74.
- McElroy, Tucker S & Politis, D N, 2011. "Distribution Theory for the Studentized Mean for Long, Short, and Negative Memory Time Series," University of California at San Diego, Economics Working Paper Series qt0dr145dt, Department of Economics, UC San Diego.
- McElroy, Tucker S. & Politis, Dimitris N., 2012. "Distribution Theory for the Studentized Mean for Long, Short, and Negative Memory Time Series," University of California at San Diego, Economics Working Paper Series qt35c7r55c, Department of Economics, UC San Diego.
- Sun, Jiajing & Hong, Yongmiao & Linton, Oliver & Zhao, Xiaolu, 2022. "Adjusted-range self-normalized confidence interval construction for censored dependent data," Economics Letters, Elsevier, vol. 220(C).
More about this item
Keywords
Brownian motion; Confidence Regions; Stationarity; Weak Dependence;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2012-12-10 (Econometrics)
- NEP-ETS-2012-12-10 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2012-55. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.