IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02887331.html
   My bibliography  Save this paper

Deep Importance Sampling

Author

Listed:
  • Benjamin Virrion

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

We present a generic path-dependent importance sampling algorithm where the Girsanov induced change of probability on the path space is represented by a sequence of neural networks taking the past of the trajectory as an input. At each learning step, the neural networks' parameters are trained so as to reduce the variance of the Monte Carlo estimator induced by this change of measure. This allows for a generic path dependent change of measure which can be used to reduce the variance of any path-dependent financial payoff. We show in our numerical experiments that for payoffs consisting of either a call, an asymmetric combination of calls and puts, a symmetric combination of calls and puts, a multi coupon autocall or a single coupon autocall, we are able to reduce the variance of the Monte Carlo estimators by factors between 2 and 9. The numerical experiments also show that the method is very robust to changes in the parameter values, which means that in practice, the training can be done offline and only updated on a weekly basis.

Suggested Citation

  • Benjamin Virrion, 2020. "Deep Importance Sampling," Working Papers hal-02887331, HAL.
  • Handle: RePEc:hal:wpaper:hal-02887331
    Note: View the original document on HAL open archive server: https://hal.science/hal-02887331v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02887331v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    2. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    3. Benjamin Virrion, 2020. "Deep Importance Sampling," Papers 2007.02692, arXiv.org, revised Jul 2020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Virrion, 2020. "Deep Importance Sampling," Papers 2007.02692, arXiv.org, revised Jul 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Virrion, 2020. "Deep Importance Sampling," Papers 2007.02692, arXiv.org, revised Jul 2020.
    2. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    3. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    4. Stefano De Marco, 2020. "On the harmonic mean representation of the implied volatility," Papers 2007.03585, arXiv.org.
    5. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    6. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    7. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    8. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    9. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    10. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    11. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    12. Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    13. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    14. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    15. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    16. Stokes, Jeffrey R. & Brinch, Brian M., 2001. "Valuing Agricultural Mortgage-Backed Securities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 33(3), pages 1-19, December.
    17. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    18. Andrea Macrina & Priyanka Parbhoo, 2014. "Randomised Mixture Models for Pricing Kernels," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 281-315, November.
    19. Beveridge, Christopher & Joshi, Mark & Tang, Robert, 2013. "Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1342-1361.
    20. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    21. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.

    More about this item

    Keywords

    Importance Sampling; Path-Dependence; Neural Networks;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02887331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.