IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v11y2004i2p143-160.html
   My bibliography  Save this article

A New Control Variate Estimator for an Asian Option

Author

Listed:
  • Kenji Kamizono
  • Takeaki Kariya
  • Regina Liu
  • Teruo Nakatsuma

Abstract

There exist several estimators for valuing the Asian option on the arithmetic mean. Among all variance reduction estimators, the one with the control variate derived from the geometric mean has been shown by Boyle et al. (1997) to perform best so far. In this paper, a new improved control variate estimator for this type of Asian option is proposed and investigated. Simulation results confirm that it does perform better than the control variate derived from the geometric mean. The improvement becomes more significant as the volatility increases and/or as the time to expiration lengthens. Copyright Springer Science+Business Media, Inc. 2004

Suggested Citation

  • Kenji Kamizono & Takeaki Kariya & Regina Liu & Teruo Nakatsuma, 2004. "A New Control Variate Estimator for an Asian Option," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(2), pages 143-160, June.
  • Handle: RePEc:kap:apfinm:v:11:y:2004:i:2:p:143-160
    DOI: 10.1007/s10690-006-9007-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-006-9007-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-006-9007-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    2. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    3. Hua He & Akihiko Takahashi, 2000. "A Variable Reduction Technique for Pricing Average‐rate Options," International Review of Finance, International Review of Finance Ltd., vol. 1(2), pages 123-142, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takahiko Fujita & Masahiro Ishii, 2010. "Valuation of a Repriceable Executive Stock Option," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(1), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Bertrand & Jean-Luc Prigent, 2015. "On Path-Dependent Structured Funds: Complexity Does Not Always Pay (Asian versus Average Performance Funds)," Finance, Presses universitaires de Grenoble, vol. 36(2), pages 67-105.
    2. Manuel Moreno & Javier F. Navas, 2008. "Australian Options," Australian Journal of Management, Australian School of Business, vol. 33(1), pages 69-93, June.
    3. Manuel Moreno & Javier F. Navas, 2003. "Australian Asian options," Economics Working Papers 680, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    5. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    6. Aprahamian, Hrayer & Maddah, Bacel, 2015. "Pricing Asian options via compound gamma and orthogonal polynomials," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 21-43.
    7. Tian-Shyr Dai & Yuh-Dauh Lyuu, 2002. "Efficient, exact algorithms for asian options with multiresolution lattices," Review of Derivatives Research, Springer, vol. 5(2), pages 181-203, May.
    8. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    9. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    10. Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2015. "Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 418-437.
    11. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    12. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    13. Noorani, Idin & Mehrdoust, Farshid & Nasroallah, Abdelaziz, 2021. "A generalized antithetic variates Monte-Carlo simulation method for pricing of Asian option in a Markov regime-switching model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 1-15.
    14. Yu, Fangping & Xiang, Zhiyuan & Wang, Xuanhe & Yang, Mo & Kuang, Haibo, 2023. "An innovative tool for cost control under fragmented scenarios: The container freight index microinsurance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    15. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    16. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    17. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    18. Andrea Macrina & Priyanka Parbhoo, 2014. "Randomised Mixture Models for Pricing Kernels," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 281-315, November.
    19. Benjamin Virrion, 2020. "Deep Importance Sampling," Papers 2007.02692, arXiv.org, revised Jul 2020.
    20. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    21. David Heath & Eckhard Platen, 2002. "A variance reduction technique based on integral representations," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 362-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:11:y:2004:i:2:p:143-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.