IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i7d10.1057_palgrave.jors.2602645.html
   My bibliography  Save this article

A farewell to the use of antithetic variates in Monte Carlo simulation

Author

Listed:
  • E Saliby

    (COPPEAD/UFRJ)

  • R J Paul

    (Brunel University)

Abstract

Antithetic variates (AV) is one the oldest and most popular variance reduction techniques (VRTs), commonly using complementary random numbers. The AV variance reduction is generally justified by the negative correlation it produces in paired simulation estimates. A new and simpler interpretation of the AV role is presented, showing AV as solely a procedure for input sample means compensation, without any further contribution from the complementary idea. The proposed interpretation is based on the descriptive sampling framework, viewing input samples as composed of a set of values and their sequencing. Simulation experiments and third-party results give support to this interpretation. However, when newer simulation sampling methods, like Latin Hypercube Sampling, Descriptive Sampling, Moment Matching and Quasi-Monte Carlo are adopted, all of them based on a controlled selection of the input sample values, AV turns irrelevant. Other VRTs are also affected by the ideas presented here.

Suggested Citation

  • E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:7:d:10.1057_palgrave.jors.2602645
    DOI: 10.1057/palgrave.jors.2602645
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602645
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Athanassios N. Avramidis & James R. Wilson, 1996. "Integrated Variance Reduction Strategies for Simulation," Operations Research, INFORMS, vol. 44(2), pages 327-346, April.
    3. George B. Kleindorfer, 1971. "Bounding Distributions for a Stochastic Acyclic Network," Operations Research, INFORMS, vol. 19(7), pages 1586-1601, December.
    4. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    5. Barry L. Nelson, 2004. "50th Anniversary Article: Stochastic Simulation Research in Management Science," Management Science, INFORMS, vol. 50(7), pages 855-868, July.
    6. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    7. Robert S. Sullivan & Jack C. Hayya & Ronny Schaul, 1982. "Efficiency of the Antithetic Variate Method for Simulating Stochastic Networks," Management Science, INFORMS, vol. 28(5), pages 563-572, May.
    8. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(3), pages 383-405, September.
    9. Crawford, J. W. & Gallwey, T. J., 2000. "Bias and variance reduction in computer simulation studies," European Journal of Operational Research, Elsevier, vol. 124(3), pages 571-590, August.
    10. Jèôme Barraquand, 1995. "Numerical Valuation of High Dimensional Multivariate European Securities," Management Science, INFORMS, vol. 41(12), pages 1882-1891, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander, Carol & Meng, Xiaochun & Wei, Wei, 2022. "Targeting Kollo skewness with random orthogonal matrix simulation," European Journal of Operational Research, Elsevier, vol. 299(1), pages 362-376.
    2. Agni Rakshit & Gautam Bandyopadhyay & Tanujit Chakraborty, 2024. "Hedge Error Analysis In Black Scholes Option Pricing Model: An Asymptotic Approach Towards Finite Difference," Papers 2405.02919, arXiv.org.
    3. Daniel A. Griffith, 2019. "Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics," Stats, MDPI, vol. 2(3), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    2. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    3. Tomáš Tichý, 2008. "Posouzení vybraných možností zefektivnění simulace Monte Carlo při opčním oceňování [Examination of selected improvement approaches to Monte Carlo simulation in option pricing]," Politická ekonomie, Prague University of Economics and Business, vol. 2008(6), pages 772-794.
    4. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    5. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    8. Berridge, S.J. & Schumacher, J.M., 2002. "An Irregular Grid Approach for Pricing High Dimensional American Options," Discussion Paper 2002-99, Tilburg University, Center for Economic Research.
    9. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    10. Zbigniew Palmowski & Tomasz Serafin, 2020. "A Note on Simulation Pricing of π -Options," Risks, MDPI, vol. 8(3), pages 1-19, August.
    11. Jin-Chuan Duan & Geneviève Gauthier & Jean-Guy Simonato, 2001. "Asymptotic Distribution of the EMS Option Price Estimator," Management Science, INFORMS, vol. 47(8), pages 1122-1132, August.
    12. Zbigniew Palmowski & Tomasz Serafin, 2020. "Note on simulation pricing of $\pi$-options," Papers 2007.02076, arXiv.org, revised Aug 2020.
    13. Axel Kind, 2005. "Pricing American-Style Options By Simulation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 19(1), pages 109-116, June.
    14. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    15. Jong Jun Park & Geon Ho Choe, 2016. "A new variance reduction method for option pricing based on sampling the vertices of a simplex," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1165-1173, August.
    16. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    17. Chuang-Chang Chang & Chueh-Yung Tsao, 2011. "Efficient and accurate quadratic approximation methods for pricing Asian strike options," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 729-748.
    18. Phelim P. Boyle & Adam W. Kolkiewicz & Ken Seng Tan, 2013. "Pricing Bermudan options using low-discrepancy mesh methods," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 841-860, May.
    19. Almeida, Caio & Pereira, Leonardo Tavares, 2016. "Pricing Options Embedded in Debentures with Credit Risk," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(1), March.
    20. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:7:d:10.1057_palgrave.jors.2602645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.