IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.12453.html
   My bibliography  Save this paper

Theoretical and Empirical Validation of Heston Model

Author

Listed:
  • Zheng Cao
  • Xinhao Lin

Abstract

This study focuses on the application of the Heston model to option pricing, employing both theoretical derivations and empirical validations. The Heston model, known for its ability to incorporate stochastic volatility, is derived and analyzed to evaluate its effectiveness in pricing options. For practical application, we utilize Monte Carlo simulations alongside market data from the Crude Oil WTI market to test the model's accuracy. Machine learning based optimization methods are also applied for the estimation of the five Heston parameters. By calibrating the model with real-world data, we assess its robustness and relevance in current financial markets, aiming to bridge the gap between theoretical finance models and their practical implementations.

Suggested Citation

  • Zheng Cao & Xinhao Lin, 2024. "Theoretical and Empirical Validation of Heston Model," Papers 2409.12453, arXiv.org, revised Oct 2024.
  • Handle: RePEc:arx:papers:2409.12453
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.12453
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    2. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Cao & Helyette Geman, 2024. "A Hype-Adjusted Probability Measure for NLP Stock Return Forecasting," Papers 2412.07587, arXiv.org, revised Feb 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    2. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    3. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Daniel Guterding, 2023. "Sparse Modeling Approach to the Arbitrage-Free Interpolation of Plain-Vanilla Option Prices and Implied Volatilities," Risks, MDPI, vol. 11(5), pages 1-24, April.
    6. Thaddeus Neururer & George Papadakis & Edward J. Riedl, 2016. "Tests of investor learning models using earnings innovations and implied volatilities," Review of Accounting Studies, Springer, vol. 21(2), pages 400-437, June.
    7. Matic, Jovanka Lili & Packham, Natalie & Härdle, Wolfgang Karl, 2021. "Hedging Cryptocurrency Options," MPRA Paper 110985, University Library of Munich, Germany.
    8. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    9. Dillschneider, Yannick & Maurer, Raimond, 2019. "Functional Ross recovery: Theoretical results and empirical tests," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    10. Jovanka Lili Matic & Natalie Packham & Wolfgang Karl Härdle, 2023. "Hedging cryptocurrency options," Review of Derivatives Research, Springer, vol. 26(1), pages 91-133, April.
    11. Achintya Gopal, 2024. "Filling in Missing FX Implied Volatilities with Uncertainties: Improving VAE-Based Volatility Imputation," Papers 2411.05998, arXiv.org.
    12. Won Joong Kim & Gunho Jung & Sun-Yong Choi, 2020. "Forecasting CDS Term Structure Based on Nelson–Siegel Model and Machine Learning," Complexity, Hindawi, vol. 2020, pages 1-23, July.
    13. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    14. Antoine Jacquier & Claude Martini & Aitor Muguruza, 2018. "On VIX futures in the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 45-61, January.
    15. Mehdi El Amrani & Antoine Jacquier & Claude Martini, 2019. "Dynamics of symmetric SSVI smiles and implied volatility bubbles," Papers 1909.10272, arXiv.org, revised Feb 2021.
    16. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    17. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    18. Pierre-Antoine Arsaguet & Paul Bilokon, 2023. "Derivatives Sensitivities Computation under Heston Model on GPU," Papers 2309.10477, arXiv.org.
    19. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    20. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.12453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.