IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01568851.html
   My bibliography  Save this paper

Économétrie & Machine Learning

Author

Listed:
  • Arthur Charpentier

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

  • Emmanuel Flachaire

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Antoine Ly

    (UPE - Université Paris-Est)

Abstract

L'économétrie et l'apprentissage machine semblent avoir une finalité en commun: construire un modèle prédictif, pour une variable d'intérêt, à l'aide de variables explicatives (ou features). Pourtant, ces deux champs se sont développés en parallèle, créant ainsi deux cultures différentes, pour paraphraser Breiman (2001a). Le premier visait à construire des modèles probabilistes permettant de décrire des phénomèmes économiques. Le second utilise des algorithmes qui vont apprendre de leurs erreurs, dans le but, le plus souvent de classer (des sons, des images, etc). Or récemment, les modèles d'apprentissage se sont montrés plus efficaces que les techniques économétriques traditionnelles (avec comme prix à payer un moindre pouvoir explicatif), et surtout, ils arrivent à gérer des données beaucoup plus volumineuses. Dans ce contexte, il devient nécessaire que les économètres comprennent ce que sont ces deux cultures, ce qui les oppose et surtout ce qui les rapproche, afin de s'approprier des outils développés par la communauté de l'apprentissage statistique, pour les intégrer dans des modèles économétriques.

Suggested Citation

  • Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2018. "Économétrie & Machine Learning," Working Papers hal-01568851, HAL.
  • Handle: RePEc:hal:wpaper:hal-01568851
    Note: View the original document on HAL open archive server: https://hal.science/hal-01568851v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01568851v3/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Debreu, Gerard, 1986. "Theoretical Models: Mathematical Forms and Economic Content," Econometrica, Econometric Society, vol. 54(6), pages 1259-1270, November.
    4. Shoshana Grossbard (ed.), 2006. "Jacob Mincer A Pioneer of Modern Labor Economics," Springer Books, Springer, number 978-0-387-29175-8, June.
    5. Murphy, Kevin M & Welch, Finis, 1990. "Empirical Age-Earnings Profiles," Journal of Labor Economics, University of Chicago Press, vol. 8(2), pages 202-229, April.
    6. Kadija Charni & Stephen Bazen, 2017. "Do earnings really decline for older workers?," International Journal of Manpower, Emerald Group Publishing Limited, vol. 38(1), pages 4-24, April.
    7. Thomas Lemieux, 2006. "The “Mincer Equation” Thirty Years After Schooling, Experience, and Earnings," Springer Books, in: Shoshana Grossbard (ed.), Jacob Mincer A Pioneer of Modern Labor Economics, chapter 11, pages 127-145, Springer.
    8. Jacob A. Mincer, 1974. "Introduction to "Schooling, Experience, and Earnings"," NBER Chapters, in: Schooling, Experience, and Earnings, pages 1-4, National Bureau of Economic Research, Inc.
    9. Xavier D’Haultfoeuille & Pauline Givord, 2014. "La régression quantile en pratique," Économie et Statistique, Programme National Persée, vol. 471(1), pages 85-111.
    10. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    11. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    12. Feldstein, Martin & Horioka, Charles, 1980. "Domestic Saving and International Capital Flows," Economic Journal, Royal Economic Society, vol. 90(358), pages 314-329, June.
    13. Cong Li & Qi Li & Jeffrey Racine & DAIQIANG ZHANG, 2017. "Optimal Model Averaging Of Varying Coefficient Models," Department of Economics Working Papers 2017-01, McMaster University.
    14. James Heckman & Justin L. Tobias & Edward Vytlacil, 2003. "Simple Estimators for Treatment Parameters in a Latent-Variable Framework," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 748-755, August.
    15. Jacob A. Mincer, 1974. "Schooling, Experience, and Earnings," NBER Books, National Bureau of Economic Research, Inc, number minc74-1.
    16. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Machine Learning Methods for Demand Estimation," American Economic Review, American Economic Association, vol. 105(5), pages 481-485, May.
    17. Aviv Nevo & Michael D. Whinston, 2010. "Taking the Dogma out of Econometrics: Structural Modeling and Credible Inference," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 69-82, Spring.
    18. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    19. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    20. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    21. E. J. Working, 1927. "What Do Statistical "Demand Curves" Show?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 41(2), pages 212-235.
    22. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    23. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    24. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    25. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    26. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    27. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    28. Jacob A. Mincer, 1974. "Schooling and Earnings," NBER Chapters, in: Schooling, Experience, and Earnings, pages 41-63, National Bureau of Economic Research, Inc.
    29. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    30. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    31. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    32. John Aldrich, 2010. "The Econometricians' Statisticians, 1895–1945," History of Political Economy, Duke University Press, vol. 42(1), pages 111-154, Spring.
    33. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 533-575.
    34. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    35. Ahamada, Ibrahim & Flachaire, Emmanuel, 2010. "Non-Parametric Econometrics," OUP Catalogue, Oxford University Press, number 9780199578009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    2. Polachek, Solomon W., 2008. "Earnings Over the Life Cycle: The Mincer Earnings Function and Its Applications," Foundations and Trends(R) in Microeconomics, now publishers, vol. 4(3), pages 165-272, April.
    3. Braga, Breno, 2018. "Earnings dynamics: The role of education throughout a worker’s career," Labour Economics, Elsevier, vol. 52(C), pages 83-97.
    4. Colm Harmon & Hessel Oosterbeek, 2000. "The Returns to Education: A Review of Evidence, Issues and Deficiencies in the Literature," CEE Discussion Papers 0005, Centre for the Economics of Education, LSE.
    5. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    6. Schultz, T. Paul, 1997. "Assessing the productive benefits of nutrition and health: An integrated human capital approach," Journal of Econometrics, Elsevier, vol. 77(1), pages 141-158, March.
    7. Berger, Johannes & Strohner, Ludwig, 2020. "Documentation of the PUblic Policy Model for Austria and other European countries (PUMA)," Research Papers 11, EcoAustria – Institute for Economic Research.
    8. Kadija Charni, 2016. "Is it Better to Work When We Are Older? An Empirical Comparison Between France and Great Britain," AMSE Working Papers 1640, Aix-Marseille School of Economics, France.
    9. Solomon W. Polachek & Jun (Jeff) Xiang, 2006. "The Effects of Incomplete Employee Wage Information: A Cross-Country Analysis," Research in Labor Economics, in: The Economics of Immigration and Social Diversity, pages 35-75, Emerald Group Publishing Limited.
    10. Mona Said & Fatma El-Hamidi, 2008. "Taking Technical Education Seriously in MENA: Determinants, Labor Market Implications and Policy Lessons," Working Papers 450, Economic Research Forum, revised 09 Jan 2008.
    11. Solomon Polachek, 2003. "Mincer's Overtaking Point and the Life Cycle Earnings Distribution," Review of Economics of the Household, Springer, vol. 1(4), pages 273-304, December.
    12. Fortin, Bernard & Ragued, Safa, 2017. "Does temporary interruption in postsecondary education induce a wage penalty? Evidence from Canada," Economics of Education Review, Elsevier, vol. 58(C), pages 108-122.
    13. Fossen, Frank M. & Büttner, Tobias J.M., 2013. "The returns to education for opportunity entrepreneurs, necessity entrepreneurs, and paid employees," Economics of Education Review, Elsevier, vol. 37(C), pages 66-84.
    14. repec:lan:wpaper:4408 is not listed on IDEAS
    15. Christina Boll & Andreas Lagemann, 2018. "Does Culture Trump Money? Employment and Childcare Use of Migrant and Non-Migrant Mothers of Pre-School Children in Germany," SOEPpapers on Multidisciplinary Panel Data Research 1015, DIW Berlin, The German Socio-Economic Panel (SOEP).
    16. Justin L. Tobias, 2003. "Are Returns to Schooling Concentrated Among the Most Able? A Semiparametric Analysis of the Ability–earnings Relationships," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(1), pages 1-29, February.
    17. Solomon W. Polachek & Jun Xiang, 2009. "The Gender Pay Gap across Countries: A Human Capital Approach," SOEPpapers on Multidisciplinary Panel Data Research 227, DIW Berlin, The German Socio-Economic Panel (SOEP).
    18. Angel de la Fuente & Antonio Ciccone, 2003. "Human capital in a global and knowledge-based economy," UFAE and IAE Working Papers 562.03, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    19. repec:csa:wpaper:2013/13 is not listed on IDEAS
    20. Christina Boll & Andreas Lagemann, 2018. "Does Culture Trump Money? Erwerbsverhalten und Kitanutzung von Müttern mit und ohne Migrationshintergrund in Deutschland," SOEPpapers on Multidisciplinary Panel Data Research 1014, DIW Berlin, The German Socio-Economic Panel (SOEP).
    21. Frankema, Ewout & van Waijenburg, Marlous, 2019. "The Great Convergence. Skill Accumulation and Mass Education in Africa and Asia, 1870-2010," CEPR Discussion Papers 14150, C.E.P.R. Discussion Papers.
    22. Gizem Akar & Binnur Balkan & Semih Tümen, 2013. "Overview of Firm-Size and Gender Pay Gaps in Turkey: The Role of Informal Employment," Ekonomi-tek - International Economics Journal, Turkish Economic Association, vol. 2(3), pages 1-21, September.

    More about this item

    Keywords

    apprentissage; données massives; modélisation; économétrie; moindres carrés;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01568851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.