IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1601.05872.html
   My bibliography  Save this paper

The value of foresight

Author

Listed:
  • Philip Ernst
  • L. C. G. Rogers
  • Quan Zhou

Abstract

Suppose you have one unit of stock, currently worth 1, which you must sell before time $T$. The Optional Sampling Theorem tells us that whatever stopping time we choose to sell, the expected discounted value we get when we sell will be 1. Suppose however that we are able to see $a$ units of time into the future, and base our stopping rule on that; we should be able to do better than expected value 1. But how much better can we do? And how would we exploit the additional information? The optimal solution to this problem will never be found, but in this paper we establish remarkably close bounds on the value of the problem, and we derive a fairly simple exercise rule that manages to extract most of the value of foresight.

Suggested Citation

  • Philip Ernst & L. C. G. Rogers & Quan Zhou, 2016. "The value of foresight," Papers 1601.05872, arXiv.org, revised Jul 2016.
  • Handle: RePEc:arx:papers:1601.05872
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1601.05872
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1761-1784.
    2. Axel Grorud & Monique Pontier, 1998. "Insider Trading in a Continuous Time Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 331-347.
    3. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 263-286, July.
    4. Back, Kerry, 1992. "Insider Trading in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 387-409.
    5. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    6. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    7. Claudio Fontana & Monique Jeanblanc & Shiqi Song, 2014. "On arbitrages arising with honest times," Finance and Stochastics, Springer, vol. 18(3), pages 515-543, July.
    8. Imkeller, Peter & Pontier, Monique & Weisz, Ferenc, 2001. "Free lunch and arbitrage possibilities in a financial market model with an insider," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 103-130, March.
    9. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    10. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    11. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(3), pages 383-405, September.
    12. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. Jèôme Barraquand, 1995. "Numerical Valuation of High Dimensional Multivariate European Securities," Management Science, INFORMS, vol. 41(12), pages 1882-1891, December.
    14. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    2. Philip A. Ernst & James R. Thompson & Yinsen Miao, 2017. "Tukey’s transformational ladder for portfolio management," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 317-355, August.
    3. Lee, Susan E. & Braithwaite, Peter & Leach, Joanne M. & Rogers, Chris D.F., 2016. "A comparison of energy systems in Birmingham, UK, with Masdar City, an embryonic city in Abu Dhabi Emirate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1299-1309.
    4. Fabrice Baudoin & Oleksii Mostovyi, 2024. "The indifference value of the weak information," Papers 2408.02137, arXiv.org.
    5. José Manuel Corcuera & Giulia Di Nunno, 2018. "Kyle–Back’S Model With A Random Horizon," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-41, March.
    6. Karen Grigorian & Robert A. Jarrow, 2023. "Enlargement of Filtrations: An Exposition of Core Ideas with Financial Examples," Papers 2303.03573, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    2. Ngoc Huy Chau & Wolfgang Runggaldier & Peter Tankov, 2016. "Arbitrage and utility maximization in market models with an insider," Papers 1608.02068, arXiv.org, revised Sep 2016.
    3. Delia Coculescu & Aditi Dandapani, 2020. "Insiders and their Free Lunches: the Role of Short Positions," Papers 2012.00359, arXiv.org, revised Jan 2022.
    4. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    5. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    6. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    7. Peter Imkeller, 2003. "Malliavin's Calculus in Insider Models: Additional Utility and Free Lunches," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 153-169, January.
    8. L. C. G. Rogers, 2015. "Bermudan options by simulation," Papers 1508.06117, arXiv.org, revised Jan 2016.
    9. Burcu Aydoğan & Ümit Aksoy & Ömür Uğur, 2018. "On the methods of pricing American options: case study," Annals of Operations Research, Springer, vol. 260(1), pages 79-94, January.
    10. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    11. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    12. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    13. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2019. "Insider information and its relation with the arbitrage condition and the utility maximization problem," Papers 1909.03430, arXiv.org, revised Dec 2019.
    14. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    15. D'Auria, Bernardo & Salmerón Garrido, José Antonio, 2019. "Insider information and its relation with the arbitrage condition and the utility maximization problem," DES - Working Papers. Statistics and Econometrics. WS 28805, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Jain, Shashi & Oosterlee, Cornelis W., 2015. "The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 412-431.
    17. Giacomo Morelli, 2021. "Liquidity drops," Annals of Operations Research, Springer, vol. 299(1), pages 711-719, April.
    18. Jin, Xing & Yang, Cheng-Yu, 2016. "Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 65-77.
    19. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    20. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1601.05872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.