IDEAS home Printed from https://ideas.repec.org/p/ajf/louvlr/2021024.html
   My bibliography  Save this paper

Affine term structure models: a time-change approach with perfect fit to market curves

Author

Listed:
  • Mbaye, Cheikh

    (Université catholique de Louvain, LIDAM/CORE, Belgium)

  • Vrins, Frédéric

    (Université catholique de Louvain, LIDAM/CORE, Belgium)

Abstract

We address the so-called calibration problem which consists of fitting in a tractable way a given model to a specified term structure like, e.g., yield, prepayment or default probability curves. Time-homogeneous jump-diffusions like Vasicek or Cox-Ingersoll-Ross (possibly coupled with compound Poisson jumps, JCIR, a.k.a. SRJD), are tractable processes but have limited flexibility; they fail to replicate actual market curves. The deterministic shift extension of the latter, Hull-White or JCIR++ (a.k.a. SSRJD) is a simple but yet efficient solution that is widely used by both academics and practitioners. However, the shift approach may not be appropriate when positivity is required, a common constraint when dealing with credit spreads or default intensities. In this paper, we tackle this problem by adopting a time change approach, leading to the TC-JCIR model. On the top of providing an elegant solution to the calibration problem under positivity constraint, our model features additional interesting properties in terms of variance. It is compared to the shift extension on various credit risk applications such as credit default swap, credit default swaption and credit valuation adjustment under wrong-way risk. The TC-JCIR model is able to generate much larger implied volatilities and covariance effects than JCIR++ under positivity constraint, and therefore offers an appealing alternative to the shift extension in such cases.

Suggested Citation

  • Mbaye, Cheikh & Vrins, Frédéric, 2021. "Affine term structure models: a time-change approach with perfect fit to market curves," LIDAM Reprints LFIN 2021024, Université catholique de Louvain, Louvain Finance (LFIN).
  • Handle: RePEc:ajf:louvlr:2021024
    Note: In: Mathematical Finance, 2022, vol. 32(2), p. 678-724
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cheikh Mbaye & Frédéric Vrins, 2018. "A Subordinated Cir Intensity Model With Application To Wrong-Way Risk Cva," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-22, November.
    2. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    3. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Frédéric Vrins, 2017. "Wrong-Way Risk Cva Models With Analytical Epe Profiles Under Gaussian Exposure Dynamics," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-35, November.
    6. BRIGO, Damiano & VRINS, Frédéric, 2018. "Disentangling wrong-way risk: pricing credit valuation adjustment via change of measures," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1154-1164.
    7. Monique Jeanblanc & Frédéric Vrins, 2018. "Conic martingales from stochastic integrals," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 516-535, April.
    8. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    9. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    10. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    11. Damiano Brigo & Agostino Capponi & Andrea Pallavicini, 2014. "Arbitrage-Free Bilateral Counterparty Risk Valuation Under Collateralization And Application To Credit Default Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 125-146, January.
    12. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    13. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402, arXiv.org.
    14. Kim, Jinbeom & Leung, Tim, 2016. "Pricing derivatives with counterparty risk and collateralization: A fixed point approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 525-539.
    15. Hélyette Geman & Dilip B. Madan & Marc Yor, 2001. "Time Changes for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 79-96, January.
    16. Black, Fischer, 1995. "Interest Rates as Options," Journal of Finance, American Finance Association, vol. 50(5), pages 1371-1376, December.
    17. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    18. Vyacheslav Gorovoy & Vadim Linetsky, 2007. "Intensity‐Based Valuation Of Residential Mortgages: An Analytically Tractable Model," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 541-573, October.
    19. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    20. Breton, Michèle & Marzouk, Oussama, 2018. "Evaluation of counterparty risk for derivatives with early-exercise features," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 1-20.
    21. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    22. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
    23. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    24. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    25. Damir Filipović & Martin Larsson & Anders B. Trolle, 2017. "Linear-Rational Term Structure Models," Journal of Finance, American Finance Association, vol. 72(2), pages 655-704, April.
    26. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    27. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheikh Mbaye & Fr'ed'eric Vrins, 2019. "An arbitrage-free conic martingale model with application to credit risk," Papers 1909.02474, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, August.
    5. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    8. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    9. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    10. J. C. Arismendi-Zambrano & Vladimir Belitsky & Vinicius Amorim Sobreiro & Herbert Kimura, 2020. "The Implications of Tail Dependency Measures for Counterparty Credit Risk Pricing," Economics Department Working Paper Series n306-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    11. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    12. Emma Berenguer-Carceles & Ricardo Gimeno & Juan M. Nave, 2012. "Estimation of the Term Structure of Interest Rates: Methodology and Applications," Working Papers 12.06, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).
    13. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    14. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    15. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    16. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    17. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    18. Wei-Choun Yu & Donald M. Salyards, 2009. "Parsimonious modeling and forecasting of corporate yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 73-88.
    19. Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023. "The incremental information in the yield curve about future interest rate risk," Journal of Banking & Finance, Elsevier, vol. 155(C).
    20. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajf:louvlr:2021024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Séverine De Visscher (email available below). General contact details of provider: https://edirc.repec.org/data/lfuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.