IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.04652.html
   My bibliography  Save this paper

Filtration shrinkage, the structure of deflators, and failure of market completeness

Author

Listed:
  • Constantinos Kardaras
  • Johannes Ruf

Abstract

We analyse the structure of local martingale deflators projected on smaller filtrations. In a general continuous-path setting, we show that the local martingale part in the multiplicative Doob-Meyer decomposition of projected local martingale deflators are themselves local martingale deflators in the smaller information market. Via use of a Bayesian filtering approach, we demonstrate the exact mechanism of how updates on the possible class of models under less information result in the strict supermartingale property of projections of such deflators. Finally, we demonstrate that these projections are unable to span all possible local martingale deflators in the smaller information market, by investigating a situation where market completeness is not retained under filtration shrinkage.

Suggested Citation

  • Constantinos Kardaras & Johannes Ruf, 2019. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Papers 1912.04652, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:1912.04652
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.04652
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1761-1784.
    2. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    3. Delia Coculescu & Monique Jeanblanc & Ashkan Nikeghbali, 2012. "Default times, no-arbitrage conditions and changes of probability measures," Finance and Stochastics, Springer, vol. 16(3), pages 513-535, July.
    4. Jeanblanc, Monique & Song, Shiqi, 2015. "Martingale representation property in progressively enlarged filtrations," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4242-4271.
    5. Claudio Fontana & Monique Jeanblanc & Shiqi Song, 2014. "On arbitrages arising with honest times," Finance and Stochastics, Springer, vol. 18(3), pages 515-543, July.
    6. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    7. Prokaj, Vilmos, 2009. "Unfolding the Skorohod reflection of a semimartingale," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 534-536, February.
    8. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    9. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    10. Song, Shiqi, 2016. "Drift operator in a viable expansion of information flow," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2297-2322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Criens & Mikhail Urusov, 2023. "Criteria for the absence of arbitrage in general diffusion markets," Papers 2306.11470, arXiv.org, revised Sep 2024.
    2. Francesca Biagini & Andrea Mazzon & Ari-Pekka Perkkiö, 2023. "Optional projection under equivalent local martingale measures," Finance and Stochastics, Springer, vol. 27(2), pages 435-465, April.
    3. Černý, Aleš & Ruf, Johannes, 2023. "Simplified calculus for semimartingales: Multiplicative compensators and changes of measure," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 572-602.
    4. Çetin, Umut & Larsen, Kasper, 2023. "Uniqueness in cauchy problems for diffusive real-valued strict local martingales," LSE Research Online Documents on Economics 118743, London School of Economics and Political Science, LSE Library.
    5. Umut Cetin & Kasper Larsen, 2020. "Uniqueness in Cauchy problems for diffusive real-valued strict local martingales," Papers 2007.15041, arXiv.org, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinos Kardaras & Johannes Ruf, 2020. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Finance and Stochastics, Springer, vol. 24(4), pages 871-901, October.
    2. Kreher, Dörte, 2017. "Change of measure up to a random time: Details," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1565-1598.
    3. Choulli, Tahir & Yansori, Sina, 2022. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 230-264.
    4. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    5. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2018. "No-arbitrage under a class of honest times," Finance and Stochastics, Springer, vol. 22(1), pages 127-159, January.
    6. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    7. Bálint, Dániel Ágoston, 2022. "Characterisation of L0-boundedness for a general set of processes with no strictly positive element," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 51-75.
    8. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    9. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2020. "The value of informational arbitrage," Finance and Stochastics, Springer, vol. 24(2), pages 277-307, April.
    10. Delia Coculescu & Aditi Dandapani, 2020. "Insiders and their Free Lunches: the Role of Short Positions," Papers 2012.00359, arXiv.org, revised Jan 2022.
    11. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    12. Song, Shiqi, 2016. "Drift operator in a viable expansion of information flow," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2297-2322.
    13. Jerome Detemple & Marcel Rindisbacher & Scott Robertson, 2020. "Dynamic Noisy Rational Expectations Equilibrium With Insider Information," Econometrica, Econometric Society, vol. 88(6), pages 2697-2737, November.
    14. St'ephane Cr'epey & Shiqi Song, 2017. "Invariance times," Papers 1702.01045, arXiv.org.
    15. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    16. Stéphane Crépey & Shiqi Song, 2017. "Invariance Times ," Working Papers hal-01455414, HAL.
    17. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1761-1784.
    18. Di Tella, Paolo, 2020. "On the weak representation property in progressively enlarged filtrations with an application in exponential utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 760-784.
    19. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    20. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio without NFLVR: existence, complete characterization, and duality," Papers 1807.06449, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.04652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.