IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v151y2022icp230-264.html
   My bibliography  Save this article

Explicit description of all deflators for market models under random horizon with applications to NFLVR

Author

Listed:
  • Choulli, Tahir
  • Yansori, Sina

Abstract

This paper considers an initial market model, specified by its underlying assets S and its flow of information F, and an arbitrary random time τ which might not be an F-stopping time. As the death time and the default time (that τ might represent) can be seen when they occur only, the progressive enlargement of F with τ sounds tailor-fit for modeling the new flow of information G that incorporates both F and τ. In this setting of informational market, the first principal goal resides in describing as explicitly as possible the set of all deflators for (Sτ,G), while the second principal goal lies in addressing the No-Free-Lunch-with-Vanishing-Risk concept (NFLVR hereafter) for (Sτ,G). Besides this direct application to NFLVR, the set of all deflators constitutes the dual set of all “admissible” wealth processes for the stopped model (Sτ,G), and hence it is vital in many hedging and pricing related optimization problems. Thanks to the results of Choulli et al. (2020), on martingales classification and representation for progressive enlarged filtration, our two main goals are fully achieved in different versions, when the survival probability never vanishes. The results are illustrated on the two particular cases when (S,F) follows the jump-diffusion model and the discrete-time model.

Suggested Citation

  • Choulli, Tahir & Yansori, Sina, 2022. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 230-264.
  • Handle: RePEc:eee:spapps:v:151:y:2022:i:c:p:230-264
    DOI: 10.1016/j.spa.2022.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922001296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    2. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1761-1784.
    3. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    4. Claudio Fontana & Monique Jeanblanc & Shiqi Song, 2014. "On arbitrages arising with honest times," Finance and Stochastics, Springer, vol. 18(3), pages 515-543, July.
    5. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    6. Choulli, Tahir & Stricker, Christophe, 2009. "Comparing the minimal Hellinger martingale measure of order q to the q-optimal martingale measure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1368-1385, April.
    7. Stefan Ankirchner & Jakub Zwierz, 2011. "Initial Enlargement of Filtrations and Entropy of Poisson Compensators," Journal of Theoretical Probability, Springer, vol. 24(1), pages 93-117, March.
    8. Yuri Kabanov & Constantinos Kardaras & Shiqi Song, 2016. "No arbitrage of the first kind and local martingale numéraires," Finance and Stochastics, Springer, vol. 20(4), pages 1097-1108, October.
    9. Ioannis Karatzas & Constantinos Kardaras, 2007. "The numéraire portfolio in semimartingale financial models," Finance and Stochastics, Springer, vol. 11(4), pages 447-493, October.
    10. Kardaras, Constantinos, 2010. "Numéraire-invariant preferences in financial modeling," LSE Research Online Documents on Economics 44993, London School of Economics and Political Science, LSE Library.
    11. Shiqi Song, 2014. "Local martingale deflators for asset processes stopped at a default time $S^\tau$ or right before $S^{\tau-}$," Papers 1405.4474, arXiv.org, revised Jul 2016.
    12. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    13. Aksamit, Anna & Choulli, Tahir & Deng, Jun & Jeanblanc, Monique, 2019. "No-arbitrage under additional information for thin semimartingale models," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3080-3115.
    14. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    15. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libo Li & Ruyi Liu & Marek Rutkowski, 2022. "Vulnerable European and American Options in a Market Model with Optional Hazard Process," Papers 2212.12860, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    2. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    3. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2018. "No-arbitrage under a class of honest times," Finance and Stochastics, Springer, vol. 22(1), pages 127-159, January.
    4. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio without NFLVR: existence, complete characterization, and duality," Papers 1807.06449, arXiv.org.
    5. Constantinos Kardaras & Johannes Ruf, 2020. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Finance and Stochastics, Springer, vol. 24(4), pages 871-901, October.
    6. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    7. Bálint, Dániel Ágoston, 2022. "Characterisation of L0-boundedness for a general set of processes with no strictly positive element," Stochastic Processes and their Applications, Elsevier, vol. 147(C), pages 51-75.
    8. Ferdoos Alharbi & Tahir Choulli, 2022. "Log-optimal portfolio after a random time: Existence, description and sensitivity analysis," Papers 2204.03798, arXiv.org.
    9. Constantinos Kardaras & Johannes Ruf, 2019. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Papers 1912.04652, arXiv.org, revised Aug 2020.
    10. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    11. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    12. Aksamit, Anna & Choulli, Tahir & Deng, Jun & Jeanblanc, Monique, 2019. "No-arbitrage under additional information for thin semimartingale models," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3080-3115.
    13. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2020. "The value of informational arbitrage," Finance and Stochastics, Springer, vol. 24(2), pages 277-307, April.
    14. Song, Shiqi, 2016. "Drift operator in a viable expansion of information flow," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2297-2322.
    15. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    16. Claudio Fontana & Simone Pavarana & Wolfgang J. Runggaldier, 2023. "A stochastic control perspective on term structure models with roll-over risk," Finance and Stochastics, Springer, vol. 27(4), pages 903-932, October.
    17. St'ephane Cr'epey & Shiqi Song, 2017. "Invariance times," Papers 1702.01045, arXiv.org.
    18. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
    19. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    20. Dániel Ágoston Bálint & Martin Schweizer, 2018. "Making No-Arbitrage Discounting-Invariant: A New FTAP Beyond NFLVR and NUPBR," Swiss Finance Institute Research Paper Series 18-23, Swiss Finance Institute, revised Mar 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:151:y:2022:i:c:p:230-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.